精英家教网 > 高中数学 > 题目详情
在1,2,3,4,5的所有排列a1,a2,a3,a4,a5中,
(1)求满足a1<a2,a2>a3,a3<a4,a4>a5的概率;
(2)记ξ为某一排列中满足ai=i(i=1,2,3,4,5)的个数,求ξ的分布列和数学期望.
分析:(1)本题是一个古典概型,试验发生包含的所有的排列种数有A55.满足条件的事件中,若a1,a3,a5取集合{1,2,3}中的元素,a2,a4取集合{4,5}中的元素,都符合要求,若a1,a3,a5取集合{1,2,4}中的元素,a2,a4取集合{3,5}中的元素,列举出结果,得到概率.
(2)ξ为某一排列中满足ai=i(i=1,2,3,4,5)的个数,由题意知ξ可以取0,1,2,3,5.结合变量对应的事件,写出变量的分布列,和期望.
解答:解:(1)由题意知,本题是一个古典概型,
试验发生包含的所有的排列种数有A55=120个.
满足a1<a2,a2>a3,a3<a4,a4>a5的排列中,
若a1,a3,a5取集合{1,2,3}中的元素,a2,a4取集合{4,5}中的元素,都符合要求,有A33A22=12个.
若a1,a3,a5取集合{1,2,4}中的元素,a2,a4取集合{3,5}中的元素,
这时符合要求的排列只有1,3,2,5,4;2,3,1,5,4;4,5,1,3,2;4,5,2,3,1共4个.
故满足条件的概率P=
A
3
3
A
2
2
+4
A
5
5
=
2
15

(2)随机变量ξ可以取0,1,2,3,5.
P(ξ=5)=
1
A
5
5
=
1
120

P(ξ=3)=
C
3
5
A
5
5
=
1
12

P(ξ=2)=
2
C
2
5
A
5
5
=
1
6

P(ξ=1)=
9
C
1
5
A
5
5
=
3
8

P(ξ=0)=1-
1+
C
3
5
+2
C
2
5
+9
C
1
5
A
5
5
=
11
30

∴ξ的分布列为
精英家教网
∴ξ的数学期望Eξ=0×
11
30
+1×
3
8
+2×
1
6
+3×
1
12
+5×
1
120
=1
点评:求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

10、在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列方式种数共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列方式种数共有
864
864

查看答案和解析>>

科目:高中数学 来源: 题型:

在1,2,3,4,5这五个数字所组成的没有重复数字的三位数中,其中各个位上数字之和为9的三位数共有
12
12
个(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

在1,2,3,4,5这五个数中任取三个组成数字不重复的三位数,则所有三位数的和为
 
(用数字作答)

查看答案和解析>>

同步练习册答案