精英家教网 > 高中数学 > 题目详情

设点P(x0,y0)在直线x=m(y≠±m,0<m<1)上,过点P作双曲线x2-y2=1的两条切线PA、PB,切点为A、B,定点

(1)求证:三点A、M、B共线.

(2)过点A作直线x-y=0的垂线,垂足为N,试求△AMN的重心G所在曲线方程.

答案:
解析:

  证明:(1)设,由已知得到,且

  设切线的方程为:

  

  从而,解得

  因此的方程为:

  同理的方程为:

  又上,所以

  即点都在直线

  又也在直线上,所以三点共线

  (2)垂线的方程为:

  由得垂足,设重心

  所以 解得

  由可得为重心所在曲线方程


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=kx+k+1,抛物线C:y2=4x,定点M(1,1).
(I)当直线l经过抛物线焦点F时,求点M关于直线l的对称点N的坐标,并判断点N是否在抛物线C上;
(II)当k(k≠0)变化且直线l与抛物线C有公共点时,设点P(a,1)关于直线l的对称点为Q(x0,y0),求x0关于k的函数关系式x0=f(k);若P与M重合时,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P(x,y)(y≥0)为平面直角坐标系xOy中的一个动点(O为坐标原点),点P到定点M(0,
1
2
)
的距离比点P到x轴的距离大
1
2

(1)求点P的轨迹方程;
(2)若直线l:y=kx+1与点P的轨迹相交于A、B两点,且|AB|=2
6
,求k的值;
(3)设点P的轨迹曲线为C,点Q(x0,y0)(x0≤1)是曲线C上的一点,求以点Q为切点的曲线C的切线方程及切线倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(0,1),且离心率为
3
2
,A、B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)设点P(x0,y0)是椭圆C上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ并延长交过点B且垂直于x轴的直线l于点D,N为DB的中点.
(i)求证:点Q在以AB为直径的圆O上;
(ii)求证:OQ⊥NQ.

查看答案和解析>>

科目:高中数学 来源:江苏省东海高级中学2010届高三数学第一学期期中数学试题苏教版 苏教版 题型:044

已知函数f(x)=x2-2x,g(x)=logax.如果函数h(x)=f(x)+g(x)没有极值点,且(x)存在零点.

(1)求a的值;

(2)判断方程f(x)+2=g(x)根的个数并说明理由;

(3)设点A(x1,y1),B(x2,y2)(x1<x2)是函数y=g(x)图象上的两点,平行于AB的切线以P(x0,y0)为切点,求证:x1<x0<x2

查看答案和解析>>

同步练习册答案