精英家教网 > 高中数学 > 题目详情
7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a,c是一元二次方程x2-7x+10=0的两根,且a<b<c,△ABC的面积为4.
(1)求a,b,c的值;
(2)求sinC的值.

分析 (1)利用a,c是一元二次方程x2-7x+10=0的两根,且a<c,求出a,c,利用△ABC的面积为4,求出cosB,利用余弦定理求出b;
(2)利用余弦定理求出cosC,再求出sinC.

解答 解:(1)方程x2-7x+10=0,
分解得:(x-2)(x-5)=0,
解得:x=2或x=5,
∵a<c,
∴a=2,c=5,
∵△ABC的面积为4,
∴$\frac{1}{2}×2×5×sinB$=4,
∴sinB=$\frac{4}{5}$,
∴cosB=$\frac{3}{5}$,
∴b=$\sqrt{4+25-2×2×5×\frac{3}{5}}$=$\sqrt{17}$;
(2)cosC=$\frac{4+17-25}{2×2×\sqrt{17}}$=-$\frac{1}{\sqrt{17}}$,
∴sinC=$\sqrt{1-\frac{1}{17}}$=$\frac{4\sqrt{17}}{17}$.

点评 本题考查余弦定理的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.数列{an}满足${a}_{1}=2,{a}_{n}=2{a}_{n-1}(n∈{N}^{*},n>1)$,则数列{log2an}的前10项和S10=(  )
A.55B.50C.45D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}是正项等比数列,且a1=2,a3=18,数列{bn}成等差数列,且b1+b2+b3+b4=a1+a2+a3,b1+b2+b9+b10=a1+a2+a4
(1)求数列{bn}的通项公式;
(2)设Pn=b1+b4+b7+…+b3n+1,Qn=b2+b4+b6+…+b2n+2,其中n∈N+,试比较Pn与Qn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=$\left\{\begin{array}{l}{\frac{|{x}^{2}-1|}{x-1},x≠1}\\{2,x=1}\end{array}\right.$,则在点x=1处,函数f(x)(  )
A.不连续B.连续不可导
C.可导且导数不连续D.可导且导数连续

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若A是B的充分条件,C是D的必要条件,B是D的充要条件,则D⇒C,D?A,A⇒C,D?B(用符号“⇒”,“?”,“?”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数y=$\frac{2}{{2}^{x}+1}$+m的图象关于原点对称,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}+c}{ax+b}$为奇函数,f(1)<f(3),且不等式0≤f(x)≤$\frac{3}{2}$的解集是[-2,-1]∪[2,4].
(1)求a,b,c;
(2)是否存在实数m使不等式f(sinθcosθ+sinθ+cosθ-$\sqrt{2}$)≤m2-4对一切θ∈R都成立?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.计算:
(1)-3sin$\frac{π}{2}$+2cos0°+2cos$\frac{π}{3}$-tan2$\frac{π}{3}$+cosπ;
(2)$\frac{tan120°cos(-60°)sin(-765°)}{sin330°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sin(x+$\frac{π}{6}$)=a,求sin($\frac{5π}{6}$-x)+$si{n}^{2}(\frac{π}{3}-x)$.

查看答案和解析>>

同步练习册答案