精英家教网 > 高中数学 > 题目详情
已知a>0,函数f(x)=x3-a,x∈(0,+∞),设x1>0,记曲线y=f(x)在点(x1,f(x1))处的切线为l,
(1)求l的方程;
(2)设l与x轴交点为(x2,0)证明:
x2a
1
3

②若x2a
1
3
a
1
3
x2x1
分析:(1)先求函数f(x)的导数,根据y=f(x)在点(x1,f(x1))处的切线的斜率等于在该点的导数值可得答案.
(2)①由(1)中切线方程令y=0求出x2,然后作差即得证.
②将①中结论代入即可得证.
解答:解:(1)f(x)的导数f'(x)=3x2
由此得切线l的方程y-(x13-a)=3x12(x-x1);
(2)①依题意,在切线方程中令y=0,
x2=x1-
x
3
1
-a
3
x
2
1
=
2
x
3
1
+a
3
x
2
1

x2-a
1
3
=
1
3
x
2
1
(2
x
3
1
+a-3
x
2
1
a
1
3
)
=
1
3
x
2
1
(x1-a
1
3
)2(2x1+a
1
3
)≥0

x2a
1
3
,当且仅当x1=a
1
3
时取等成立.
②若x1a
1
3
,则x13-a>0,x2-x1=
x
3
1
+a
3
x
2
1
<0

且由①x2a
1
3

所以a
1
3
x2x1
点评:本题主要考查导数的几何意义和不等式的证明.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(  )
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)求函数f(x)的单调区间;(2)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=ln(2-x)+ax.
(1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=lnx-ax2,x>0.(f(x)的图象连续不断)
(Ⅰ)当a=
1
8

①求f(x)的单调区间;
②证明:存在x0∈(2,+∞),使f(x0)=f(
3
2
);
(Ⅱ)若存在均属于区间[1,3]的α,β,且β-α≥1,使f(α)=f(β),证明
ln3-ln2
5
≤a≤
ln2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,函数f(x)=
|x-2a|
x+2a
在区间[1,4]上的最大值等于
1
2
,则a的值为
 

查看答案和解析>>

同步练习册答案