精英家教网 > 高中数学 > 题目详情
14.若角960°的终边上有一点(-4,a),则a的值是(  )
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.±4$\sqrt{3}$D.$\sqrt{3}$

分析 根据终边相同的角的概念,利用三角函数的值,即可求出a的值.

解答 解:∵960°=5×180°+60°,
∴角960°的终边在第三象限内,
且tan960°=tan60°=$\sqrt{3}$=$\frac{a}{-4}$,
∴a=-4$\sqrt{3}$.
故选:B.

点评 本题考查了终边相同角的概念与应用问题,也考查了特殊角的三角函数值的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设z=$\sqrt{2}$i(1+i)3(a-i)2且z在复平面内对应的点与原点的距离为12,则实数a=$±\sqrt{3\sqrt{2}-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\left\{\begin{array}{l}{|sinx|,x<0}\\{{2}^{x},x≥0}\end{array}\right.$,函数g(x)=$\left\{\begin{array}{l}{lg(-x),x<0}\\{{x}^{2},x≥0}\end{array}\right.$,则f(x)=g(x)根的个数是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(α)=$\frac{sin(π-α)cos(\frac{5π}{2}-α)tan(-α+π)}{tan(-\frac{π}{2}-α)sin(-π-α)}$.
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{7π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果实数x,y满足条件$\left\{\begin{array}{l}{2x-y≥0}\\{x+2y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=x+y的最小值为$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
男公务员女公务员
生二胎4020
不生二胎2020
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙、丙、丁四名同学在节日当天分别手工制作了一张卡片,送给除本人外的三人中的某一个人(每人只得一张卡片),可能的结果共有9种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=\frac{x+1}{e^x}$.
(I)求函数y=f(x)的最大值;
(II)对于任意的正整数n,求证:$\sum_{i=1}^n{\frac{1}{{i{e^i}}}<\frac{n}{n+1}}$
(III)当-1<a<b时,$\frac{f(b)-f(a)}{b-a}<m$成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

同步练习册答案