精英家教网 > 高中数学 > 题目详情
13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)设PD=AD=2,求点D到面PBC的距离.

分析 (Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=$\sqrt{3}$AD,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;
(II)要求棱锥D-PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.

解答 (Ⅰ)证明:因为∠DAB=60°,AB=2AD,
由余弦定理得$BD=\sqrt{3}AD$.…(1分)
从而BD2+AD2=AB2,∴BD⊥AD,…(3分)
又由PD⊥底面ABCD,BD?面ABCD,可得BD⊥PD.…(4分)
所以BD⊥平面PAD.故PA⊥BD.…(6分)
(Ⅱ)解:作DE⊥PB,垂足为E.
已知PD⊥底面ABCD,则PD⊥BC,
由(Ⅰ)知BD⊥AD,又BC∥AD,所以BC⊥BD.
故BC⊥平面PBD,BC⊥DE.
则DE⊥平面PBC.…(8分)
由题设知,PD=2,则$BD=2\sqrt{3}$,PB=4,…(10分)
根据DE•PB=PD•BD,得$DE=\sqrt{3}$,
即点D到面PBC的距离为$\sqrt{3}$.…(12分)

点评 此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设直线l1:2x-my=1,l2:(m-1)x-y=1,则“m=2”是“l1∥l2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合M={x|x2-2ax+1=0}中没有元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{x}{x+a}$的图象关于点(1,1)对称,g(x)=lg(10x+1)+bx是偶函数,则a+b=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),λ•μ=$\frac{9}{64}$,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合A={x|2x+3>0},B={x|x2+4x-5<0},则A∪B=(  )
A.(-5,+∞)B.(-5,-$\frac{3}{2}$)C.(-$\frac{3}{2}$,1)D.(-$\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在${({\frac{1}{x}+1})^3}{({x+2})^3}$的展开式中,常数项为(  )
A.36B.48C.63D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(-1,1)、B(1,2)、C(-2,1)、D(3,4),则向量$\overrightarrow{AD}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$-\frac{{3\sqrt{5}}}{2}$B.$-\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集为实数R,M={x|x+3>0},则∁RM为(  )
A.{x|x>-3}B.{x|x≥-3}C.{x|x<-3}D.{x|x≤-3}

查看答案和解析>>

同步练习册答案