精英家教网 > 高中数学 > 题目详情
命题“若过双曲线-y2=1的一个焦点F作与x轴不垂直的直线交双曲线于A、B两点,线段AB的垂直平分线交X轴于点M则为定值,且定值为
(1)试类比上述命题,写出一个关于椭圆C:+=1的类似的正确命题,并加以证明;
(2)试推广(1)中的命题,给出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不证明).
【答案】分析:(1)关于椭圆C的类似命题是:过椭圆的一个焦点F2(4,0)作与x轴不垂直的直线交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值为
证明:设直线l为:y=k(x-4),当k=0时,l与x轴重合,|AB|=10,|FM|=4,.当k≠0时,由,得(25k2+9)x2-8×25k2+25(16k2-9)=0,由根的判别式和韦达定理知AB的垂直平分线方程为:,由此能够证明
(2)过圆锥曲线E的一个焦点F作与x轴不垂直的直线交曲线E于A、B两点,线段AB的垂直平分线交x轴于点M,由此知则为定值
解答:解:(1)关于椭圆C的类似命题是:
过椭圆的一个焦点F2(4,0)作与x轴不垂直的直线交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则为定值,且定值为
证明:由于l与x轴不垂直,设直线l为:y=k(x-4),
①当k=0时,l与x轴重合,|AB|=10,|FM|=4,
②当k≠0时,由
消去y,得(25k2+9)x2-8×25k2+25(16k2-9)=0,
△=(8×25k22-4×25(25k2+9)(16k2-9)=4×25×92(k2+1),
设A(x1,y1),B(x2,y2),
AB中点N(x,y),

=
AB的垂直平分线方程为:
令y=0,解得x=



=

(2)过圆锥曲线E的一个焦点F作与x轴不垂直的直线交曲线E于A、B两点,
线段AB的垂直平分线交x轴于点M,则为定值,且定值为
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省襄阳四中、荆州中学、龙泉中学联考高二(下)期中数学试卷(理科)(解析版) 题型:选择题

给出下列命题:
①已知椭圆=1两焦点F1,F2,则椭圆上存在六个不同点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:=1(a>0,b>0)的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是( )
A.①③④
B.①②③
C.③④
D.①②④

查看答案和解析>>

科目:高中数学 来源:2010-2011学年安徽省巢湖市高三(上)质量检测数学试卷(理科)(解析版) 题型:填空题

给出下列命题:
①已知椭圆的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是    .(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案