精英家教网 > 高中数学 > 题目详情
18.{an}为等差数列,每相邻两项ak,ak-1分别为方程x2-4k,x+$\frac{2}{{c}_{k}}$=0(k是正整数)的两根.
(1)求{an}的通项公式;
(2)求c1+c2+…+cn之和;
(2)对于以上的数列{an}和{cn},整数981是否为数列{$\frac{2{a}_{n}}{{c}_{n}}$}中的项?若是,则求出相应的项数;若不是,则说明理由.

分析 (1)利用根与系数的关系得出ak+ak-1=4k,列出方程组解出首项和公差,
(2)利用根与系数的关系得出{cn}的通项公式,使用拆项法求和.
(3)求出{$\frac{2{a}_{n}}{{c}_{n}}$}的通项公式,观察数列的特点得出结论.

解答 解:(1)∵ak+ak-1=4k,∴$\left\{\begin{array}{l}{{a}_{2}+{a}_{1}=8}\\{{a}_{3}+{a}_{2}=12}\end{array}\right.$,设{an}公差为d,则$\left\{\begin{array}{l}{{2a}_{1}+d=8}\\{2{a}_{1}+3d=12}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=3}\\{d=2}\end{array}\right.$,
∴an=a1+(n-1)d=2n+1.
(2)∵ak•ak-1=$\frac{2}{{c}_{k}}$,∴ck=$\frac{2}{{a}_{k}{a}_{k-1}}$=$\frac{2}{(2k+1)(2k-1)}$=$\frac{1}{2k-1}$-$\frac{1}{2k+1}$.
∴c1+c2+…+cn=1-$\frac{1}{3}$+$\frac{1}{3}$$-\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$.
(3)令bn=$\frac{2{a}_{n}}{{c}_{n}}$=$\frac{2(2n+1)}{\frac{2}{(2n+1)(2n-1)}}$=(2n+1)2(2n-1).∴{bn}是递增数列,
∵b4=9×9×7=567<981,b5=11×11×9=1089>981,
∴整数981不是数列{$\frac{2{a}_{n}}{{c}_{n}}$}中的项.

点评 本题考查了数列的通项公式,数列求和,根与系数的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,an≠0,a1=1.且an•an+1=2(an-an+1
(1)求数列{an}的通项an
(2)证明:对一切正整数n,有a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$…+$\frac{{a}_{n}}{n}$<2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知全集U={l,2,3,4,5,6},集合A={l,2,4,6},集合B={l,3,5},则A∪∁UB(  )
A.{l,2,3,4,5,6}B.{1,2,4,6}C.{2,4,6}D.{2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知一种放射性物质经过120年剩留原来质量的95.76%,设质量为1的这种物质经过x年后剩量为y,则x、y之间的函数关系式为$0.957{6}^{\frac{x}{120}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$的图象与x轴相交,相邻两距离为$\frac{π}{2}$,且图象上,一个最低点为M($\frac{2π}{3}$,-2).
(1)求f(x)的解析式;
(2)求函数的单调递增区间;
(3)求出函数的对称中心和对称轴方程;
(4)求f(x)的最值及此时x的集合;
(5)当x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域;
(6)若f(α)=1,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,点E在直角三角形ABC的斜边AB上,四边形CDEF为正方形,已知正方形CDEF的面积等于36.设AF=x,直角三角形ABC的面积S=f(x).
(Ⅰ)求函数f(x)表达式;
(Ⅱ)利用函数单调性定义求f(x)的单调区间,并求出f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).
(1)证明:(x1-1)(x2-1)<0,且x1x2=1.
(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x-1|-|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某生产车间为了检测其加工的零件的质量,检验人员需抽取同批次的零件样本进行检测指标评分.若检测指标评分大于60分的零件为合格零件,指标评分不超过40分的零件将直接被淘汰,指标评分在(40,60]内的零件可能被修复也可能被淘汰.现质检员小张检测出200个合格零件,根据指标评分绘制的频率分布直方图如图所示,
(1)求出频率分布直方图中a的值;
(2)估计这200个零件指标评分的平均数和中位数;
(Ⅱ)根据已有的经验,可能被修复的零件个体被修复的概率如下表:
 零件检测指标评分所在区间 (40,50](50,60]
 每个零件个体被修复的概率 $\frac{1}{3}$ $\frac{1}{2}$
假设每个零件被修复与否相互独立.现有3个零件的检测指标评分(单位:分)为:38,45,52,
①求这3个零件中,至多有2个不被修复而淘汰的概率;
②记这3个零件被修复的个数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案