精英家教网 > 高中数学 > 题目详情
1.F是抛物线y2=4x的焦点,P为抛物线上一点.若|PF|=3,则点P的纵坐标为(  )
A.±3B.$±\;2\sqrt{2}$C.±2D.±1

分析 求出抛物线的焦点和准线方程,设出P的坐标,运用抛物线的定义,可得|PF|=d(d为P到准线的距离),即可得到所求值.

解答 解:抛物线y2=4x的焦点F(1,0),
准线l为x=-1,
设抛物线的点P(m,n),
则由抛物线的定义,可得|PF|=d(d为P到准线的距离),
即有m+1=3,
解得,m=2,
∴n2=8,
解得n=±2$\sqrt{2}$
故选:B

点评 本题考查抛物线的定义、方程和性质,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=$\frac{sinx}{x+1}$,则f′(0)等于(  )
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若两条直线2x-y=0与ax-2y-1=0互相垂直,则实数a的值为(  )
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用一个平面截正方体和正四面体,给出下列结论:
①正方体的截面不可能是直角三角形;
②正四面体的截面不可能是直角三角形;
③正方体的截面可能是直角梯形;
④若正四面体的截面是梯形,则一定是等腰梯形.
其中,所有正确结论的序号是(  )
A.②③B.①②④C.①③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点,过F1的直线l与椭圆交于两点P,Q.
(Ⅰ)若直线l的倾斜角为45°,求|PQ|;
(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过椭圆$\frac{x^2}{2}+{y^2}=1$右焦点F的直线l与椭圆交于两点C,D,与直线x=2交于点E.
(Ⅰ)若直线l的斜率为2,求|CD|;
(Ⅱ)设O为坐标原点,若S△ODE:S△OCE=1:3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xoy中,A,B是圆x2+y2=4上的两个动点,且AB=2,则线段AB中点M的轨迹方程为x2+y2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,点$P(1,\frac{3}{2})$和动点Q(m,n)都在离心率为$\frac{1}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求椭圆的方程;
(2)若直线l的方程为3mx+4ny=0,点R(点R在第一象限)为直线l与椭圆的一个交点,点T在线段OR上,且QT=2.
①若m=-1,求点T的坐标;
②求证:直线QT过定点S,并求出定点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在实数集R上的函数f(x)都可以写为一个奇函数g(x)与一个偶函数h(x)之和的形式,如果f(x)=2x+1,那么(  )
A.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$B.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$
C.$g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$D.$g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$

查看答案和解析>>

同步练习册答案