精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式
(1)判断f(x)在区间(0,π)上的增减性并证明之;
(2)设0≤x≤π,且0≤a≤1,求证:(2a-1)sinx+(1-a)sin(1-a)x≥0.

解:(1)∵f(x)=,∴f'(x)=
设g(x)=xcosx-sinx,x∈(0,π).则g'(x)=-xsinx<0
∴g(x)在(0,π)上为减函数
又∵g(0)=0,∴当x∈(0,π)时,g(x)<0,
∴当x∈(0,π)时,f'(x)=<0,可得f(x)在区间(0,π)上是减函数 …(5分)
(2)显然,当a=0、1时,或x=0、π时,不等式成立
当0<a<1且0<x<π时,原不等式等价于:(1-a)sin(1-a)x≥(1-2a)sinx.
下面证明一个更强的不等式:(1-a)sin(1-a)x≥(1-2a+a2)sinx.…①
即sin(1-a)x≥(1-a)sinx.…②
亦即
由(1)知在(0,π)上为减函数
又∵(1-a)x≤x,∴,得不等式②成立,从而①成立
∵(1-2a+a2)sinx≥(1-2a)sinx.
∴(1-a)sin(1-a)x≥(1-2a)sinx.
综上所述,得0≤x≤π,且0≤a≤1时,原不等式成立 …(12分)
分析:(1)对函数f(x)求导数,得f'(x)=,再讨论分子对应函数的单调性,得f'(x)的分子最大值小于0,从而得到f'(x)<0在区间(0,π)上恒成立,所以f(x)是区间(0,π)上的减函数;
(2)为了证明原不等式,利用(1)中的单调性,证明出不等式(1-a)sin(1-a)x≥(1-2a+a2)sinx区间(0,π)上恒成立.结合(1-2a+a2)sinx≥(1-2a)sinx得(1-a)sin(1-a)x≥(1-2a)sinx,移项整理即得原不等式成立.
点评:本题给出含三角函数的分式函数,求函数的单调性并证明不等式恒成立,着重考查了利用导数研究函数的单调性和不等式恒成立等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn与通项an满足Sn=
1
2
(1-an).
(1)求数列{an}的通项公式;
(2)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求Tn=
1
b1
+
1
b2
+
1
b3
+
1
bn
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1  (x>0)
-1(x<0)
,则不等式xf(x)+x≤4的解集是
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-1,当自变量x由1变到1.1时,函数的平均变化率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

查看答案和解析>>

同步练习册答案