已知椭圆
:![]()
的左、右焦点分别为
离心率![]()
,点
在且椭圆E上,
(Ⅰ)求椭圆
的方程;
(Ⅱ)设过点
且不与坐标轴垂直的直线交椭圆
于
两点,线段
的垂直平分线与
轴交于点
,求点
横坐标的取值范围.
(Ⅲ)试用
表示
的面积,并求
面积的最大值
(Ⅰ)
,
椭圆E的方程为
-------------------4分
(Ⅱ)设直线AB的方程为y=k(x-1)(k≠0),
代入
+y2=1,整理得(1+2k2)x2-4k2x+2k2-2=0.
∵直线AB过椭圆的右焦点
,
∴方程有两个不等实根.
记A(x1,y1),B(x2,y2),AB中点N(x0,y0),则x1+x1=![]()
---------------6分
AB垂直平分线NG的方程为
令y=0,得
----------------8分
∵
∴的取值范围为
. -------10分
(Ⅲ)
.
而
,
由
,
可得
,
,
.
所以
.
又
,所以
(
).---12
设
,则
.
可知
在区间
单调递增,在区间
单调递减.
所以,当
时,
有最大值
.
所以,当
时,△
的面积有最大值
.
【解析】略
科目:高中数学 来源: 题型:
| y2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| PA |
| AB |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系
中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆
相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 设椭圆
的左顶点为A,下顶点为B,动点P满足
,
(
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系
中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆
相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 设椭圆
的左顶点为A,下顶点为B,动点P满足
,
(
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题
(本小题满分12分)已知椭圆
的方程为
,双曲线
的左、右焦
点分别是
的左、右顶点,而
的左、右顶点分别是
的左、右焦点.
(1)求双曲线
的方程;
(2)若直线
与双曲线C2恒有两个不同的交点A和B,求
的范围。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com