精英家教网 > 高中数学 > 题目详情

已知双曲线的离心率e=2,F1、F2为两焦点,M为双曲线上一点,若∠F1MF2=60°,且数学公式.求双曲线的标准方程.

解:如图,当焦点在x轴上时,设方程为:

由∠F1MF2=60°
?|F1F2|2=|MF1|2+|MF2|2-2|MF1|•|MF2|cos60°
?16a2=(|MF1|-|MF2|)2+|MF1|•|MF2|
?16a2=4a2+|MF1|•|MF2|
?|MF1|•|MF2|=12a2

|MF1|•|MF2|sin60°=12
×12a2×=12,?a=2,
∴b=a=2
此时双曲线方程为
当焦点在y轴上时,方程为:
分析:当焦点在x轴上时,设方程为:(a>0,b>0)根据其离心率为2,知a,b,c的关系式.再由∠F1MF2=60°,且△MF1F2的面积为12.即可求得a值.由此能导出双曲线的方程.
点评:本小题主要考查双曲线、直线与圆锥曲线的位置关系等知识,考查化归与转化、数形结合的数学思想方法,以及推理论证能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知双曲线关于两坐标轴对称,且与圆x2+y2=10相交于点P(3,-1),若此圆过点P的切线与双曲线的一条渐近线平行,求此双曲线的方程;
(2)已知双曲线的离心率e=
5
2
,且与椭圆
x2
13
+
y2
3
=1有共同的焦点,求该双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,F1、F2为两焦点,M为双曲线上一点,若∠F1MF2=60°,且S△MF1F 2=12
3
.求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,且分别是双曲线虚轴的上、下端点  

(Ⅰ)若双曲线过点),求双曲线的方程;

(Ⅱ)在(Ⅰ)的条件下,若是双曲线上不同的两点,且,求直线的方程  

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为

    ①求双曲线C经过二、四象限的渐近线的倾斜角

    ②试判断在椭圆C的长轴上是否存在一定点N(a,0),

 使椭圆上的动点M满足的最小值为3,若存在求出所有可能的a值,若不存在说明理由.

     

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的离心率e=2,A,B为双曲线上两点,线段AB的垂直平分线为

    ①求双曲线C经过二、四象限的渐近线的倾斜角

    ②试判断在椭圆C的长轴上是否存在一定点N(a,0),

      使椭圆上的动点M满足的最小值为3,若存

      在求出所有可能的a值,若不存在说明理由.

查看答案和解析>>

同步练习册答案