精英家教网 > 高中数学 > 题目详情
8sin870°•cos(-660°)•cot(-355°)•tan(-175°)的值是( )
A.2
B.-2
C.
D.
【答案】分析:利用诱导公式化简函数的表达式,然后利用切化弦,即可得到结论.
解答:解:因为8sin870°•cos(-660°)•cot(-355°)•tan(-175°)
=8sin(720°+150°)•cos(660°)•cot(355°)•tan(175°)
=8sin150°•cos(720°-60°)•cot(360°-5°)•tan(180°-5°)
=-4cos60°•cot(-5°)•tan5°
=2•cot5°•tan5°
=2.
故选A.
点评:本题考查诱导公式的应用,公式掌握的熟练程度,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(Ⅰ) 求证:AB∥平面DEG;
(Ⅱ) 求证:BD⊥EG;
(Ⅲ) 求二面角C-DF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A-BCF,其中BC=
2
2

(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当AD=
2
3
时,求三棱锥F-DEG的体积VF-DEG

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C-DF-E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G 是BC的中点.
(Ⅰ)求证:AB∥平面DEG;
(Ⅱ)求证:BD⊥EG.

查看答案和解析>>

同步练习册答案