精英家教网 > 高中数学 > 题目详情

已知f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.

f(x)和g(x)的定义域都是(0,1)∪(1,+∞).

f(x)-g(x)=1+logx3-2logx2=1+logx3-logx4=logxx.

(1)当0<x<1时,若0<x<1,即0<x<

此时logxx>0,即0<x<1时,f(x)>g(x).

(2)当x>1时,若x>1,即x>,此时logxx>0,

即x>时,f(x)>g(x);

x=1,即x=,此时logxx=0,

即x=时,f(x)=g(x);

若0<x<1,即0<x<

此时logxx<0,

即1<x<时,f(x)<g(x).

综上所述,当x∈(0,1)∪(,+∞)时,f(x)>g(x);

当x=时,f(x)=g(x);当x∈(1,)时,f(x)<g(x).


解析:

要比较两个代数式的大小,通常采取作差法或作商法,作差时,所得差同零比较,作商时,应先分清代数式的正负,再将商同“1”比较大小.因为本题中的f(x)与g(x)的正负不确定,所以采取作差比较法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过点M(1,2)作曲线C的两条弦MD,ME,且MD,ME所在直线的斜率为k1,k2,满足k1k2=1,
求证:直线DE过定点,并求出这个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x=-1的方向向量为
a
及定点F(1,0),动点M,N,G满足
MN
-
a
=0,
MN
+
MF
=2
MG
MG
•(
MN
-
MF
)=0,其中点N在直线l上.
(1)求动点M的轨迹C的方程;
(2)设A、B是轨迹C上异于原点O的两个不同动点,直线OA和OB的倾斜角分别为α和β,若α+β=θ为定值(0<θ<π),试问直线AB是否恒过定点,若AB恒过定点,请求出该定点的坐标,若AB不恒过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
a(x-1)2
2x+b
,曲线y=f(x)
与直线l:4x+3y-5=0切于点A的横坐标为2,g(x)=2x-
1
3

(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间;
(3)若对于一切x∈[2,5],总存在x1∈[m,n],使f(x)=g(x1)成立,求n-m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(1,0),P是平面上一动点,P到直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过点M(1,2)作曲线C的两条弦MA,MB,设MA,MB所在直线的斜率分别为k1,k2,当k1,k2变化且满足k1+k2=-1时,证明直线AB恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•台州模拟)已知F(1,0),P是平面上一动点,P在直线l:x=-1上的射影为点N,且满足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)过F的直线与轨迹C交于A、B两点,试问在直线l上是否存在一点Q,使得△QAB为等边三角形?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案