分析 (1)利用点与圆的位置关系直接写出结果即可.
(2)设出所求的圆的半径r,利用和已知圆外切及圆心M(1,m)到点A(2,0)的距离为 $\sqrt{2}$r,求出半径r和m的值,写出所求圆的标准方程.
(3)利用圆的对称性,直接求出直线的斜率,写出直线方程即可.
解答 解:(Ⅰ)圆C:(x+2)2+y2=4,圆的圆心坐标(-2,0),半径为:2.
A在圆C内部,可得a∈(-4,0)
(2)设圆M的半径为r,由于圆M的两条切线互相垂直,
故圆心M(1,m)到点A(2,0)的距离为$\sqrt{2}$r,
∴$\left\{\begin{array}{l}{(1-2)}^{2}+{m}^{2}=2{r}^{2}\\{(1+2)}^{2}+{m}^{2}=(2+r)^{2}\end{array}\right.$,解得r=2,且m=±$\sqrt{7}$,
∴圆M的方程为(x-1)2+(y±$\sqrt{7}$)2=4.
(3)当a=-1时,设圆C的圆心为C,l1、l2 被圆C所截得弦长相等,
由圆的对称性可知,直线l1的斜率k=±1,
∴直线l1的方程为:x-y+1=0或x+y+1=0.
点评 本题考查圆的标准方程的求法、直线和圆位置关系的综合应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | r≤2 | B. | r<2 | C. | r<$\frac{1}{2}$ | D. | r≤$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | (-∞,1) | C. | (-∞,1] | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com