精英家教网 > 高中数学 > 题目详情
如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC的中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.
(Ⅰ)证明:∵PA⊥面ABCD,四边形ABCD是正方形,其对角线BD、AC交于点E,
∴PA⊥BD,AC⊥BD,
∴BD⊥平面APC,
平面PAC,
∴BD⊥FG。
(Ⅱ)解:当G为EC的中点,即时,FG∥平面PBD,
理由如下:连结PE,由F为PC的中点,G为EC的中点,知FG∥PE,
平面PBD,平面PBD,
故FG∥平面PBD。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)求证:BD⊥FG;
(Ⅱ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是正方形的四棱锥P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)求二面角B-PD-C的大小;
(Ⅲ)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点.
(Ⅰ)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由;
(Ⅱ)当二面角B-PC-D的大小为
3
时,求PC与底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是正方形的四棱锥P-ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B-PD-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一动点.
(1)求证:BD⊥FG;
(2)确定点G在线段AC上的位置,使FG∥平面PBD,并说明理由.
(3)如果PA=AB=2,求三棱锥B-CDF的体积.

查看答案和解析>>

同步练习册答案