精英家教网 > 高中数学 > 题目详情

.(本小题满分14分)

设函数(为自然对数的底数),).

(1)证明:

(2)当时,比较的大小,并说明理由;

(3)证明:).

 

【答案】

 

【解析】(1)证明:

所以

时,,当时,,当时,

即函数上单调递减,在上单调递增,在处取得唯一极小值,

因为,所以对任意实数均有

所以

(2)解:时,

用数学归纳法证明如下:

①当时,由(1)知

②假设当)时,对任意均有

因为对任意的正实数

由归纳假设知,

上为增函数,亦即

因为,所以

从而对任意,有

即对任意,有

这就是说,当时,对任意,也有

由①、②知,当时,都有

(3)证明1:先证对任意正整数

由(2)知,当时,对任意正整数,都有

,得

所以

再证对任意正整数

要证明上式,只需证明对任意正整数,不等式成立.

即要证明对任意正整数,不等式(*)成立.

以下分别用数学归纳法和基本不等式法证明不等式(*):

方法1(数学归纳法):

①当时,成立,所以不等式(*)成立.

②假设当)时,不等式(*)成立,

因为

所以

这说明当时,不等式(*)也成立.

由①、②知,对任意正整数,不等式(*)都成立.

综上可知,对任意正整数,不等式

成立.

方法2(基本不等式法):

因为

……,

将以上个不等式相乘,得

所以对任意正整数,不等式(*)都成立.

综上可知,对任意正整数,不等式

成立.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案