精英家教网 > 高中数学 > 题目详情
(2008•佛山一模)(几何证明选讲)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2
5
,则线段AC的长度为
30
30
分析:利用相交弦定理可得AE•EB=CE•ED,即可求出AE,再利用勾股定理即可得出AC.
解答:解:设AB与CD相交于E点,利用相交弦定理可得AE•EB=CE•ED,∴AE(6-AE)=(
2
5
2
)2
,化为AE2-6AE+5=0,
解得AE=5或1,取AE=5,则AC=
AE2+CE2
=
52+(
5
)2
=
30

故答案为
30
点评:熟练掌握相交弦定理和勾股定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•佛山一模)如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正视图是边长为2的正方形,则左视图的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)已知集合M={x|logx2<1},N={x|x<1},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D且PD=PC=
2

(Ⅰ)证明:PD⊥平面PBC;
(Ⅱ)求PA与平面ABCD所成的角的正切值;
(Ⅲ)若AA1=a,当a为何值时,PC∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)已知双曲线
x2
4
-y2=1
,则其渐近线方程为
y=±
1
2
x
y=±
1
2
x
,离心率为
5
2
5
2

查看答案和解析>>

同步练习册答案