| A. | y=x+$\frac{1}{x}$ | B. | y=sinθ+$\frac{1}{sinθ}$(0<θ<$\frac{π}{2}$) | ||
| C. | y=sinθ+$\frac{1}{sinθ}$(0<θ<π) | D. | $\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$ |
分析 A.x<0时,y<0.
B.0<θ<$\frac{π}{2}$,可得1>sinθ>0,利用基本不等式的性质即可判断出结论.
C.0<θ<π,可得1≥sinθ>0利用基本不等式的性质即可判断出结论.
D.利用基本不等式的性质即可判断出结论..
解答 解:A.x<0时,y<0.
B.∵0<θ<$\frac{π}{2}$,可得1>sinθ>0,∴y=sinθ+$\frac{1}{sinθ}$$>2\sqrt{sinθ•\frac{1}{sinθ}}$=2,最小值不可能为2.
C..∵0<θ<π,可得1≥sinθ>0,∴y=sinθ+$\frac{1}{sinθ}$≥$2\sqrt{sinθ•\frac{1}{sinθ}}$=2,当且仅当sinθ=1时取等号,最小值为2.
D.$\frac{1}{\sqrt{{x}^{2}+2}}$+$\sqrt{{x}^{2}+2}$>$2\sqrt{\sqrt{{x}^{2}+2}•\frac{1}{\sqrt{{x}^{2}+2}}}$=2,最小值不可能为2.
故选:C.
点评 本题考查了基本不等式的性质、三角函数的单调性与值域,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③④ | B. | ②③④ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 3 | 4 | 5 | 6 | 7 | 8 |
| y | 2.5 | 3 | 4 | 4.5 | 5.22 | 5.97 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com