10£®Ï±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö£©±ê׼úµÄ¼¸×é¶ÔÕÕÊý¾Ý£º
x345678
y2.5344.55.225.97
£¨1£©Çë¸ù¾ÝÉϱíÌṩµÄǰËÄÁÐÊý¾Ý£¨¶ÔÓ¦µÄx=3£¬4£¬5£¬6£©£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$
£¨2£©ÔÚÎó²î²»³¬¹ý0.05µÄÌõ¼þÏ£¬ÀûÓÃx=7ʱ£¬x=8À´¼ìÑ飨1£©ËùÇ󻨹éÖ±ÏßÊÇ·ñºÏÊÊ£»
£¨3£©ÒÑÖª¸Ã³§¼¼Êõ¸ÄÔìǰ100¶Ö¼×²úÆ·ÄܺÄΪ90¶Ö±ê׼ú£¬ÊÔ¸ù¾Ý£¨1£©Çó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼Êõ¸ÄÔìǰ½µµÍ¶àÉÙ¶Ö±ê׼ú£¿
£¨²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-b$\overline{x}$£©

·ÖÎö £¨1£©¸ù¾Ý±í¸ñ·Ö±ðÇó³öx£¬yµÄƽ¾ùÊý£¬Çó³öϵÊý$\widehat{b}$£¬$\widehat{a}$µÄÖµ£¬Çó³ö»Ø¹é·½³Ì¼´¿É£»
£¨2£©·Ö±ð½«x=7£¬8´úÈë·½³ÌÇó³ö½á¹ûÅжϼ´¿É£»
£¨3£©½«xµÄÖµ´úÈë½âÎöʽ¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©$\overline{x}$=4.5£»$\overline{y}$=3.5
$\stackrel{¡Ä}{b}$=$\frac{3.5}{5}$=0.7£¬$\widehat{a}$=0.35£¬
ËùÒÔ$\stackrel{¡Ä}{y}$=0.7x+0.35£¬
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬
µ±x=7ʱ£¬y=5.25£¬5.25-5.22=0.03£¼0.05
 µ±x=8ʱ£¬y=5.95£¬5.97-5.95=0.02£¼0.05
 ËùÒÔ£¬´Ë»Ø¹éÖ±Ïß·ûºÏÌõ¼þ£»
£¨3£©ÓÉ£¨1£©¿ÉÖª£¬µ±x=100ʱ£¬y=70.35£¨¶Ö£©
 ËùÒÔ£¬½µµÍÁË90-70.35=19.65¶Ö£®

µãÆÀ ±¾Ì⿼²éÁ˻ع鷽³ÌÎÊÌâÒÔ¼°»Ø¹é·½³ÌµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®.ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{3}$x3+ax2+bx£¬f¡ä£¨-1£©=-4£¬f¡ä£¨1£©=0
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©ÊÔÈ·¶¨º¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³°à¼¶Òª´ÓËÄÃûÄÐÉú¡¢Á½ÃûÅ®ÉúÖÐÑ¡ÅÉËÄÈ˲μÓij´ÎÉçÇø·þÎñ£¬ÔòËùÑ¡µÄËÄÈËÖÐÖÁÉÙÓÐÒ»ÃûÅ®ÉúµÄÑ¡·¨Îª£¨¡¡¡¡£©
A£®14B£®8C£®6D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Å×ÎïÏßy2=64xµÄ×¼Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®x=8B£®x=-8C£®x=-16D£®x=16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁк¯ÊýÖУ¬×îСֵΪ2µÄº¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=x+$\frac{1}{x}$B£®y=sin¦È+$\frac{1}{sin¦È}$£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©
C£®y=sin¦È+$\frac{1}{sin¦È}$£¨0£¼¦È£¼¦Ð£©D£®$\frac{1}{{\sqrt{{x^2}+2}}}+\sqrt{{x^2}+2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬Àâ×¶P-ABCDµÄµ×ÃæABCDÊǾØÐΣ¬PA¡ÍÆ½ÃæABCD£¬PA=AD=2£¬BD=$2\sqrt{2}$£®Çó¶þÃæ½ÇP-BC-DÓàÏÒÖµµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýg£¨x£©=lnxºÍº¯Êýf£¨x£©=-x2+£¨a+1£©x-$\frac{1}{4}$a2£¨ÆäÖÐa£¼0£©£®
£¨¢ñ£©Çóg£¨log210•lg2£©µÄÖµ£»
£¨¢ò£©ÓÃmax{m£¬n}±íʾm£¬nÖеÄ×î´óÖµ£¬É躯Êýh£¨x£©=max{f£¨x£©£¬g£¨x£©}£¨x£¾0£©£¬ÌÖÂÛº¯Êýh£¨x£©ÁãµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹ýÅ×ÎïÏßy2=4xµÄ½¹µãÇÒÓëxÖá´¹Ö±µÄÖ±Ïß½»Ë«ÇúÏß${x^2}-\frac{y^2}{3}=1$µÄÁ½Ìõ½¥½üÏßÓÚA¡¢BÁ½µã£¬ÔòAB=£¨¡¡¡¡£©
A£®$\frac{{4\sqrt{3}}}{3}$B£®$2\sqrt{3}$C£®6D£®$4\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºþ±±Ê¡Ð­×÷У¸ßÈýÁª¿¼Ò»Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êý£®

£¨1£©Èô£¬Çóº¯ÊýµÄ¼«ÖµºÍµ¥µ÷Çø¼ä£»

£¨2£©ÈôÔÚÇø¼äÉÏÖÁÉÙ´æÔÚÒ»µã£¬Ê¹µÃ³ÉÁ¢£¬ÇóʵÊýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸