精英家教网 > 高中数学 > 题目详情
1.某班级要从四名男生、两名女生中选派四人参加某次社区服务,则所选的四人中至少有一名女生的选法为(  )
A.14B.8C.6D.4

分析 根据题意,按女生的数目分2种情况讨论:①、所选的四人中有1名女生,则有3名男生,②、所选的四人中有2名女生,则有2名男生,由加法原理计算可得答案.

解答 解:根据题意,分2种情况讨论:
①、所选的四人中有1名女生,则有3名男生,有C43C21=8种情况,
②、所选的四人中有2名女生,则有2名男生,有C42C22=6种情况,
则所选的四人中至少有一名女生的选法有8+6=14种;
故选:A.

点评 本题考查排列、组合的应用,注意“至少有一名女生”的条件进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.下列说法中正确的有:①②
①若0<α<$\frac{π}{2}$,则sinα<α<tanα
②若α是第二象限角,则$\frac{α}{2}$是第一或第三象限角;
③与向量$\overrightarrow{a}$=(3,4)共线的单位向量只有$\overrightarrow{a}$=$(\frac{3}{5}$,$\frac{4}{5}$);
④函数f(x)=2x-8的零点是(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别为内角A,B,C的对边,且asinC=$\sqrt{3}$ccosA.
(1)求角A的大小;
(2)若b=6,c=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(α)=cosαsinα
(Ⅰ)若角α终边上的一点P(-4,3),求f(α)的值;
(Ⅱ)若$f(α)=\frac{1}{2}$,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z=$\sqrt{3}$+2i对应的点在(  )
A.第一象限内B.实轴上C.虚轴上D.第四象限内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{3}{\sqrt{1-x}}$+lg(3x+1)的定义域是(  )
A.(-$\frac{1}{3}$,1)B.(-∞,-$\frac{1}{3}$)C.(0,$\frac{1}{3}$)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列四个命题,其中假命题的序号是(  )
①垂直于同一条直线的两条直线互相平行
②两两相交且不过同一点的三条直线必在同一平面内
③若一个平面内有两条直线与另一个平面都平行,那么这两个平面互相平行
④与两条异面直线都相交的两条直线是异面直线.
A.①③④B.②③④C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:
x345678
y2.5344.55.225.97
(1)请根据上表提供的前四列数据(对应的x=3,4,5,6),用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)在误差不超过0.05的条件下,利用x=7时,x=8来检验(1)所求回归直线是否合适;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,点M与抛物线C的焦点F关于原点对称,过点M且斜率为k的直线l与抛物线C交于不同两点A,B,线段AB的中点为P,直线PF与抛物线C交于两点E,D.
(Ⅰ)判断是否存在实数k使得四边形AEBD为平行四边形.若存在,求出k的值;若不存在,说明理由;
(Ⅱ)求$\frac{{{{|{PF}|}^2}}}{{{{|{PM}|}^2}}}$的取值范围.

查看答案和解析>>

同步练习册答案