分析 (1)求出函数的导数,根据f′(-1)=-4,f′(1)=0,得到关于a,b的方程组,解出即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.
解答 解:(1)f′(x)=x2+2ax+b,
由f′(-1)=-4,f′(1)=0,
得$\left\{\begin{array}{l}{1-2a+b=-4}\\{1+2a+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-3}\end{array}\right.$;
(2)由(1)f(x)=$\frac{1}{3}$x3+x2-3x,
f′(x)=x2+2x-3=(x+3)(x-1),
令f′(x)>0,解得:x>1或x<-3,
令f′(x)<0,解得:-3<x<1,
故f(x)在(-∞,-3)递增,在(-3,1)递减,在(1,+∞)递增.
点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{15}$ | B. | $\frac{1}{15}$ | C. | $\frac{28}{45}$ | D. | $\frac{14}{45}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 3 | 4 | 5 | 6 | 7 | 8 |
| y | 2.5 | 3 | 4 | 4.5 | 5.22 | 5.97 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com