精英家教网 > 高中数学 > 题目详情
5.设复数z满足(z-1)i=1+i(i为虚数单位),则z=(  )
A.2+iB.2-iC.-2-iD.-2+i

分析 利用复数的运算法则即可得出.

解答 解:∵(z-1)i=1+i,∴(z-1)i•(-i)=-i(1+i),∴z-1=-i+1,化为:z=2-i.
故选:B.

点评 本题考查了复数的运算法则、共轭复数的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是递增等比数列,Sn为其前n项和,且a1+a4=28,a2•a3=27.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=(3n+1)•an,求其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若-$\frac{π}{2}<α<β≤\frac{π}{2}$,则$\frac{α-β}{2}$的取值范围是(-π,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F是双曲线$C:{x^2}-\frac{y^2}{8}=1$的右焦点,P为左支上任意一点,点$A({0,6\sqrt{6}})$,当△PAF的周长最小时,点P坐标为$({-2,2\sqrt{6}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20..已知函数f(x)=$\frac{1}{3}$x3+ax2+bx,f′(-1)=-4,f′(1)=0
(1)求a,b的值;
(2)试确定函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,-1),求:
(1)|2$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)向量2$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在正项数列{an}中,a1=2,点($\sqrt{{a}_{n}}$,$\sqrt{{a}_{n-1}}$) (n≥2)在直线x-$\sqrt{2}$ y=0上,则数列{an}的前n项和Sn=2n+1-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在限速为90km/h的公路AB旁有一测速站P,已知点P距测速区起点A的距离为0.08km,距测速区终点B的距离为0.05km,且∠APB=60°.现测得某辆汽车从A点行驶到B点所用的时间为3s,则此车的速度介于(  )
A.60~70km/hB.70~80km/hC.90~100km/hD.80~90km/h

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.求二面角P-BC-D余弦值的大小.

查看答案和解析>>

同步练习册答案