分析 以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角P-BC-D的余弦值.
解答 (本小题满分12分)![]()
解:∵棱锥P-ABCD的底面ABCD是矩形,
PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.
∴以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
P(0,0,2),B(2,0,0),C(2,2,0),D(0,2,0),
$\overrightarrow{BC}$=(0,2,0),$\overrightarrow{BP}$=(-2,0,2),
$\overrightarrow{BD}$=(-2,2,0),
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2y=0}\\{\overrightarrow{n}•\overrightarrow{BP}=-2x+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
设平面BCD的法向量$\overrightarrow{m}$=(a,b,c),
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=2b=0}\\{\overrightarrow{m}•\overrightarrow{BD}=-2a+2b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,0),
设二面角P-BC-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}$=$\frac{1}{2}$,
∴二面角P-BC-D的余弦值为$\frac{1}{2}$.
点评 本题考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{3}$,1) | B. | (-∞,-$\frac{1}{3}$) | C. | (0,$\frac{1}{3}$) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 3 | 4 | 5 | 6 | 7 | 8 |
| y | 2.5 | 3 | 4 | 4.5 | 5.22 | 5.97 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{m}{n}$ | B. | $\frac{2m}{n}$ | C. | $\frac{4m}{n}$ | D. | $\frac{6m}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 该市这次考试的数学平均成绩为80分 | |
| B. | 分数在120分以上的人数与分数在60分以下的人数相同 | |
| C. | 分数在110以上的人数与分数在50分以下的人数相同 | |
| D. | 该市这次考试的数学成绩的标准差为10 |
查看答案和解析>>
科目:高中数学 来源:2017届湖北省协作校高三联考一数学(文)试卷(解析版) 题型:解答题
已知集合
,集合
.
(1)若
,求实数
的取值范围;
(2)是否存在实数
,使得
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com