精英家教网 > 高中数学 > 题目详情
15.如图,棱锥P-ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.求二面角P-BC-D余弦值的大小.

分析 以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角P-BC-D的余弦值.

解答 (本小题满分12分)
解:∵棱锥P-ABCD的底面ABCD是矩形,
PA⊥平面ABCD,PA=AD=2,BD=$2\sqrt{2}$.
∴以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
P(0,0,2),B(2,0,0),C(2,2,0),D(0,2,0),
$\overrightarrow{BC}$=(0,2,0),$\overrightarrow{BP}$=(-2,0,2),
$\overrightarrow{BD}$=(-2,2,0),
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2y=0}\\{\overrightarrow{n}•\overrightarrow{BP}=-2x+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,1),
设平面BCD的法向量$\overrightarrow{m}$=(a,b,c),
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=2b=0}\\{\overrightarrow{m}•\overrightarrow{BD}=-2a+2b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,0),
设二面角P-BC-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}×\sqrt{2}}$=$\frac{1}{2}$,
∴二面角P-BC-D的余弦值为$\frac{1}{2}$.

点评 本题考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设复数z满足(z-1)i=1+i(i为虚数单位),则z=(  )
A.2+iB.2-iC.-2-iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{3}{\sqrt{1-x}}$+lg(3x+1)的定义域是(  )
A.(-$\frac{1}{3}$,1)B.(-∞,-$\frac{1}{3}$)C.(0,$\frac{1}{3}$)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.满足条件a=6,b=5,B=120°的△ABC的个数是(  )
A.零个B.一个C.两个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:
x345678
y2.5344.55.225.97
(1)请根据上表提供的前四列数据(对应的x=3,4,5,6),用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(2)在误差不超过0.05的条件下,利用x=7时,x=8来检验(1)所求回归直线是否合适;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在正方形ABCD内随机生成n个点,其中在正方形ABCD内切圆内的点共有m个,利用随机模拟的方法,估计圆
周率π的近似值为(  )
A.$\frac{m}{n}$B.$\frac{2m}{n}$C.$\frac{4m}{n}$D.$\frac{6m}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)+B( A>0,ω>0,$|φ|<\frac{π}{2}$,x∈R),在同一个周期内,当$x=\frac{π}{4}$时,函数取最大值3,当$x=\frac{7π}{12}$时,函数取最小值-1,
(1)求函数f(x)的解析式;
(2)将f(x)的图象上所有点向左平移$\frac{π}{6}$个单位,再将所得图象上所有点的横坐标变为原来的$\frac{3}{2}$倍,得到g(x)的图象,讨论g(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某市组织了一次高三调研考试,考后统计的数学成绩ξ-N(80,100),则下列说法中不正确的是(  )
A.该市这次考试的数学平均成绩为80分
B.分数在120分以上的人数与分数在60分以下的人数相同
C.分数在110以上的人数与分数在50分以下的人数相同
D.该市这次考试的数学成绩的标准差为10

查看答案和解析>>

科目:高中数学 来源:2017届湖北省协作校高三联考一数学(文)试卷(解析版) 题型:解答题

已知集合,集合

(1)若,求实数的取值范围;

(2)是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案