精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是递增等比数列,Sn为其前n项和,且a1+a4=28,a2•a3=27.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足bn=(3n+1)•an,求其前n项和Tn

分析 (Ⅰ)根据等比数列的通项公式,列方程组,即可求得a1及公比q,即可求得数列{an}的通项公式;
(Ⅱ)由(Ⅰ)求得bn=(3n+1)×3n-1,利用“错位相减法”即可求得其前n项和Tn

解答 解:(Ⅰ)由数列{an}是递增等比数列,首项a1>0,公比为q>1,an=a1qn-1
a1+a1q3=28,①
a1q•a1q2=27,②
解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=3}\end{array}\right.$,
∴数列{an}的通项公式an=3n-1
(Ⅱ)由bn=(3n+1)×3n-1
则前n项和Tn=b1+b2+…+bn=4×1+7×3+10×32+…+(3n+1)×3n-1
则3Tn=4×3+7×32+10×33+…+(3n-2)×3n-1+(3n+1)×3n
两式相减得:-2Tn=4+3×3+3×32+…+3×3n-1-(3n+1)×3n
=1+3×$\frac{1-{3}^{n}}{1-3}$-(3n+1)×3n
=(-3n+$\frac{1}{2}$)3n-$\frac{1}{2}$,
∴Tn=($\frac{3n}{2}$-$\frac{1}{4}$)3n+$\frac{1}{4}$=$\frac{(6n-1)×{3}^{n}+1}{4}$,
∴数列{bn}前n项和Tn=$\frac{(6n-1)×{3}^{n}+1}{4}$.

点评 本题考查等比数列的通项公式,等比数列前n项和,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知复平面内的平面向量$\overrightarrow{OA}$,$\overrightarrow{AB}$表示的复数分别是-2+i,3+2i,则向量$\overrightarrow{OB}$所表示的复数的模为(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.$\sqrt{10}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\frac{{\sqrt{2}}}{2}cos({2x+\frac{π}{4}})+{sin^2}x$
(1)求f(x)的最小正周期;
(2)当$x∈[{\frac{π}{6},\frac{π}{3}}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c.若角B是A,C的等差中项,且不等式-x2+8x-12>0的解集为{x|a<x<c},则△ABC的面积等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当n≥2,n∈N*时,求证:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x(1+x)n,则${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+4${C}_{n}^{3}$+…+n${C}_{n}^{n-1}$+(n+1)${C}_{n}^{n}$=(n+2)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1、F2,P为椭圆上一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=(m+1)x2-mx+m-1
(1)当m=1时,求不等式f(x)>0的解集;
(2)若m>-1,求不等式f(x)>mx的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设复数z满足(z-1)i=1+i(i为虚数单位),则z=(  )
A.2+iB.2-iC.-2-iD.-2+i

查看答案和解析>>

同步练习册答案