精英家教网 > 高中数学 > 题目详情
已知函数f(x),如果对任意一个三角形,只要它的三边长a,b,c都在f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”.在函数①f1(x)=
x
,②f2(x)=x,③f3(x)=x2中,其中
 
是“保三角形函数”.(填上正确的函数序号)
分析:欲判断三个函数f(x)是不是“保三角形函数”,只须任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,我们判断f(a),f(b),f(c)是否满足任意两数之和大于第三个数,即任意两边之和大于第三边即可.
解答:解:f1(x),f2(x)是“保三角形函数”,f3(x)不是“保三角形函数”.
任给三角形,设它的三边长分别为a,b,c,则a+b>c,不妨假设a≤c,b≤c,
由于
a
+
b
a+b
c
>0
,所以f1(x),f2(x)是“保三角形函数”.
对于f3(x),3,3,5可作为一个三角形的三边长,但32+32<52
所以不存在三角形以32,32,52为三边长,故f3(x)不是“保三角形函数”.
故答案为:①②.
点评:要想判断f(x)为“保三角形函数”,要经过严密的论证说明f(x)满足“保三角形函数”的概念,但要判断f(x)不为“保三角形函数”,仅须要举出一个反例即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图,则f(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+b(a>0且a≠1)的图象如图所示,则a,b的值分别是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表.
x -1 0 4 5
f(x) 1 2 2 1
f(x)的导函数y=f′(x)的图象如图所示:下列关于f(x)的命题:
①f(x)是周期函数;
②函数f(x)在[0,2]是减函数;
③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;
④函数y=f(x)-a的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是
②④
②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)的部分图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)的对称轴方程与单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则y=f(x)的图象可由函数g(x)=sinx的图象(纵坐标不变)(  )

查看答案和解析>>

同步练习册答案