精英家教网 > 高中数学 > 题目详情
函数f(x)=x4-4x3+ax2-1在[0,1]上单调递增,在[1,2]上单调递减.
(1)求实数a的值;
(2)设g(x)=bx2-1,若关于x的方程f(x)=g(x)的解集中含有3个元素,求实数b的取值范围.
分析:(1)求出原函数的导函数,根据原函数在[0,1]上单调递增,在[1,2]上单调递减,得导函数在两个区间内的符号,由导函数在两区间内的符号列式求解a的值;
(2)由方程f(x)=g(x)的解集中含有3个元素,得到得x2(x2-4x+4-b)=0有3个不相等的实根,转化为二次方程有两个不同的实根,然后由二次方程的判别式大于0求解b的范围.
解答:解:(1)∵f'(x)=4x3-12x2+2ax=2x(2x2-6x+a),
又 f(x)在[0,1]上单调递增,在[1,2]上单调递减.
∴在[0,1]上恒有f'(x)≥0,在[1,2]上恒有f'(x)≤0,
令g(x)=2x2-6x+a,
即在[0,1]上恒有g(x)≥0,在[1,2]上恒有g(x)≤0,
g(1)=a-4=0
g(2)=a-4≤0
,∴a=4.
(2)由f(x)=g(x)的解集中含有3个元素,得x2(x2-4x+4-b)=0有3个不相等的实根.
故x2-4x+4-b=0有两个不相等的非零实根,∴△=16-4(4-b)>0,且4-b≠0.
解得:0<b<4,或b>4,
∴b∈(0,4)∪(4,+∞).
点评:本题考查了函数的单调性与导数的关系,考查了根的存在性与根的个数的判断,考查了数学转化思想方法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)当a=-
103
时,讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;
(Ⅲ)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x4-2ax2,g(x)=1.
(1)求证:函数f(x)与g(x)的图象恒有公共点;
(2)当x∈(0,1]时,若函数f(x)图象上任一点处切线斜率均小于1,求实数a的取值范围;
(3)当x∈[0,1]时,关于x的不等式|f′(x)|>g(x)的解集为空集,求所有满足条件的实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=x4-x2,那么 f′(i)=(  ) (i是虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x4+ax3+bx2+cx+d.
(1)当a=d=-1,b=c=0时,若函数f(x)的图象与x轴所有交点的横坐标的和与积分别为m,n.
(i)求证:f(x)的图象与x轴恰有两个交点;
(ii)求证:m2=n-n3
(2)当a=c,d=1时,设函数f(x)有零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(3)是f(x)的导函数在x=3时的值,若函数f(x)=x4-f′(3)x,则f′(3)等于(  )

查看答案和解析>>

同步练习册答案