精英家教网 > 高中数学 > 题目详情
已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x+2
(1)求f(x)和g(x)的解析式;
(2)若不等式f(x)≥ag(x)对任意实数x恒成立,求实数a的取值范围.
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:(1)根据函数奇偶性的性质利用方程组法即可求f(x)和g(x)的解析式;
(2)根据不等式恒成立进行转化,利用一元二次不等式的性质即可得到结论.
解答: 解:(1)∵f(x)为偶函数,g(x)为奇函数
∴f(-x)=f(x),g(-x)=-g(x)
又∵f(x)+g(x)=x2+x+2    (1)
∴f(-x)+g(-x)=x2-x+2
∴f(x)-g(x)=x2-x+2    (2)
解(1)(2)联立的方程组得
f(x)=x2+2,g(x)=x.
(2)∵f(x)≥a g(x)对任意实数x恒成立
即x2+2≥ax对任意实数x恒成立
∴x2-ax+2≥0对任意实数x恒成立
∴△=a2-8≤0
∴-2
2
≤a≤2
2
点评:本题主要考查函数的奇偶性的应用以及不等式恒成立问题,根据奇偶性的定义利用方程组法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知(x-
2a
x
6的展开式中常数项为-160,则常数a=(  )
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,点P是圆O1:(x+2)2+y2=1上任意一点,点Q是圆O2:(x-2)2+y2=1上任意一点,动点M满足|MP|max+|MQ|min=10,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点A(2,0),B是曲线x2+y2=1上的一动点,点M在线段AB上,且满足AM:BM=2:1,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(m2-4)x+m是偶函数,g(x)=xm在(-∞,0)内单调递增,则实数m=(  )
A、2B、±2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

下列计算不正确的是(  )
A、log3243=log335=5log33=5×1=5
B、log510-log52=log5
10
2
=log5
5=1
C、lg2+lg5=lg(2×5)=lg10=1
D、log8(8×4)=log88+log84=1+
1
2
=
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调增区间;
(3)若x∈[-
π
2
,0],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

4(-π)6
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α∥β,AB,CD是两异面直线,且A,C∈α,B,D∈β,AC⊥BD,AC=6,BD=8,M是AB的中点,过M作一个平面γ,交CD于N,且γ∥α,则MN的长度为
 

查看答案和解析>>

同步练习册答案