精英家教网 > 高中数学 > 题目详情
设函数f(x)=(1+x)2-ln(1+x)2
(1)求函数f(x)的单调区间;
(2)当时,不等式f(x)<m恒成立,求实数m的取值范围;
(3)若关于x的方程x2+x+a=f(x)在[0,2]上恰有两个相异实根,求实数a的取值范围。
解:(1)函数的定义域为(-∞,-1)∪(-1,+∞)

由f'(x)>0,得-2 <x<-1或x>0;
由f'(x)<0,得x<-2或-1<x<0
所以f(x)的递增区间是(-2,-1),(0,+∞);
递减区间是(-∞,-2),(-1,0)。
(2)由(1)知f(x)在上单调递减,在[0,e-1]上单调递增


所以当时,f(x)max=e2-2
因为当时,不等式f(x)<m恒成立,
所以m>f(x)max,即m>e2-2,
故m的取值范围为(e2-2,+∞)。
(3)方程f(x)=x2+x+a,即x-a+1-ln(1+x)2=0
记g(x)=x-a+1-ln(1+x)2,则
由g'(x)>0,得x<-1或x>1;
由g'(x)<0,得-1<x<1
所以g(x)在[0,1]上单调递减,在[1,2]上单调递增
为使f(x)=x2+x+a在[0,2]上恰有两个相异的实根,
只需g(x)=0在[0,1)和(1,2]上各有一个实根,
于是有
解得2-2ln2<a≤3-2ln3
故实数a的取值范围是(2-2ln2,3-2ln3]。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax3-3x+1(x∈R),若对于任意的x∈[-1,1]都有f(x)≥0成立,则实数a的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安徽)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}
(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β-α);
(Ⅱ)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区二模)记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素.
(1)判断函数f(x)=-x+1,g(x)=2x-1是否是M的元素;
(2)设函数f(x)=log2(1-2x),求f(x)的反函数f-1(x),并判断f(x)是否是M的元素;
(3)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈D,f2(x)=x,则称f(x)是集合M的元素,
例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素,并求f(x)的反函数f-1(x);
(2)f(x)=
axx+b
∈M
(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
(2)设正数P1,P2,P3,…P2n满足P1+P2+…P2n=1,求证:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

查看答案和解析>>

同步练习册答案