£¨2009•ÁijÇһģ£©¹ýµãP£¨1£¬0£©×÷ÇúÏßC£ºy=xk£¨x¡Ê£¨0£¬+¡Þ£©£¬k¡ÊN*£¬k£¾1£©µÄÇÐÏߣ¬ÇеãΪM1£¬ÉèM1ÔÚxÖáÉϵÄͶӰÊǵãP1£»ÓÖ¹ýµãP1×÷ÇúÏßCµÄÇÐÏߣ¬ÇеãΪM2£¬ÉèM2ÔÚxÖáÉϵÄͶӰÊǵãP2£»¡­£»ÒÀ´ËÏÂÈ¥£¬µÃµ½Ò»ÏµÁеãM1£¬M2£¬¡­Mn£¬¡­£»ÉèËüÃǵĺá×ø±êa1£¬a2£¬¡­£¬
an¡­¹¹³ÉÊýÁÐΪ{an}£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÇóÖ¤£ºan¡Ý1+
n
k-1
£»
£¨¢ó£©µ±k=2ʱ£¬Áîbn=
n
an
£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍSn£®
·ÖÎö£º£¨¢ñ£©¶Ôy=xkÇóµ¼Êý£¬µÃy¡ä=kxk-1£¬ÇеãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®µ±n=1ʱ£¬a1=
k
k-1
£»µ±n£¾1ʱ£¬µÃ
an
an-1
=
k
k-1
£®ÓÉ´ËÄÜÇó³öÊýÁÐ{an}µÄͨÏʽ£®
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
k
k-1
)n=(1+
1
k-1
)n=
C
0
n
+
C
1
n
1
k-1
+
C
2
n
(
1
k-1
)2+¡­+
C
n
n
(
1
k-1
)n¡Ý1+
n
k-1
£®
£¨ III£©µ±k=2ʱ£¬an=2n£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
1
2
+
2
22
+
3
23
+¡­+
n
2n
£¬ÀûÓôíλÏà¼õ·¨Äܹ»µÃµ½Sn=2-
n+2
2n
£®
½â´ð£º½â£º£¨¢ñ£©¶Ôy=xkÇóµ¼Êý£¬
µÃy¡ä=kxk-1£¬
µãÊÇMn£¨an£¬ank£©µÄÇÐÏß·½³ÌÊÇy-ank=kank-1£¨x-an£©£®¡­£¨2·Ö£©
µ±n=1ʱ£¬ÇÐÏß¹ýµãP£¨1£¬0£©£¬
¼´0-a1k=ka1k-1£¨1-a1£©£¬
µÃa1=
k
k-1
£»
µ±n£¾1ʱ£¬ÇÐÏß¹ýµãPn-1£¨an-1£¬0£©£¬
¼´0-ank=kank-1£¨an-1-an£©£¬
µÃ
an
an-1
=
k
k-1
£®
ËùÒÔÊýÁÐ{an}ÊÇÊ×Ïîa1=
k
k-1
£¬¹«±ÈΪ
k
k-1
µÄµÈ±ÈÊýÁУ¬
ËùÒÔÊýÁÐ{an}µÄͨÏʽΪan=(
k
k-1
)n£¬n¡ÊN*
£®¡­£¨4·Ö£©
£¨ II£©Ó¦ÓöþÏîʽ¶¨Àí£¬µÃan=(
k
k-1
)n=(1+
1
k-1
)n=
C
0
n
+
C
1
n
1
k-1
+
C
2
n
(
1
k-1
)2+¡­+
C
n
n
(
1
k-1
)n¡Ý1+
n
k-1
£®¡­£¨8·Ö£©
£¨ III£©µ±k=2ʱ£¬an=2n£¬
ÊýÁÐ{bn}µÄÇ°nÏîºÍSn=
1
2
+
2
22
+
3
23
+¡­+
n
2n
£¬
ͬ³ËÒÔ
1
2
£¬µÃ
1
2
Sn
=
1
22
+
2
23
+
3
24
+¡­+
n
2n+1
£¬
Á½Ê½Ïà¼õ£¬¡­£¨10·Ö£©
µÃ
1
2
Sn
=
1
2
+
1
22
+
1
23
+¡­+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1
£¬
ËùÒÔSn=2-
n+2
2n
£®¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬Ö¤Ã÷an¡Ý1+
n
k-1
£¬ÇóÊýÁеÄÇ°nÏîºÍ£®¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÒªÈÏÕæÉóÌ⣬עÒâ´íλÏà¼õ·¨µÄÁé»îÔËÓ㬱¾ÌâÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬Ò׳ö´í£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÁijÇһģ£©ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©£¬¹ýµãM£¨2p£¬0£©µÄÖ±ÏßÓëÅ×ÎïÏßÏཻÓÚA£¬B£¬
OA
OB
=
0
0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÁijÇһģ£©Á½¸öÕýÊýa£¬bµÄµÈ²îÖÐÏîÊÇ5£¬µÈ±ÈÖÐÏîÊÇ4£®Èôa£¾b£¬ÔòË«ÇúÏß
x2
a
-
y2
b
=1µÄ½¥½üÏß·½³ÌÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÁijÇһģ£©Ä³Ð£ÓÐһƶÀ§Ñ§ÉúÒò²¡ÐèÊÖÊõÖÎÁÆ£¬µ«ÏÖÔÚ»¹²îÊÖÊõ·Ñ1.1ÍòÔª£¬ÍÅί¼Æ»®ÔÚȫУ¿ªÕ¹°®ÐÄļ¾è»î¶¯£¬ÎªÁËÔö¼Ó»î¶¯µÄȤζÐÔÎüÒý¸ü¶àѧÉú²ÎÓ룬Ìؾٰ조ҡ½±100%Öн±¡±»î¶¯£®·²¾è¿î10ÔªÕߣ¬ÏíÊÜÒ»´ÎÒ¡½±»ú»á£¬ÈçͼÊÇÒ¡½±»úµÄ½á¹¹Ê¾Òâͼ£¬Ò¡½±»úµÄÐýתÅÌÊǾùÔȵģ¬ÉÈÐÎÇøÓòA£¬B£¬C£¬D£¬EËù¶ÔÓ¦µÄÔ²ÐĽǵıÈÖµ·Ö±ðΪ1£º2£º3£º4£º5£®ÏàÓ¦ÇøÓò·Ö±ðÉèÁ¢Ò»¡¢¶þ¡¢Èý¡¢ËÄ¡¢ÎåµÈ½±£¬½±Æ··Ö±ðΪ¼ÛÖµ·Ö±ðΪ5Ôª¡¢4Ôª¡¢3Ôª¡¢2Ôª¡¢1ÔªµÄѧϰÓÃÆ·£®Ò¡½±Ê±£¬×ª¶¯Ô²ÅÌƬ¿Ì£¬´ýÍ£Ö¹ºó£¬¹Ì¶¨Ö¸ÕëÖ¸ÏòÄĸöÇøÓò£¨±ßÏߺöÂÔ²»¼Æ£©¼´¿É»ñµÃÏàÓ¦¼ÛÖµµÄѧϰÓÃÆ·£¨ÈçͼָÕëÖ¸ÏòÇøÓòC£¬¿É»ñµÃ¼ÛÖµ3ÔªµÄѧϰÓÃÆ·£©£®
£¨¢ñ£©Ô¤¼ÆȫУ¾è¿î10ÔªÕß½«»á´ïµ½1500È˴Σ¬ÄÇô³ýÈ¥¹ºÂòѧϰÓÃÆ·µÄ¿îÏîºó£¬Ê£Óà¿îÏîÊÇ·ñÄÜ°ïÖú¸ÃÉúÍê³ÉÊÖÊõÖÎÁÆ£¿
£¨¢ò£©Èç¹ûѧÉú¼×¾è¿î20Ôª£¬»ñµÃÁËÁ½´ÎÒ¡½±»ú»á£¬ÇóËû»ñµÃ¼ÛÖµ6ÔªµÄѧϰÓÃÆ·µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÁijÇһģ£©Èçͼ£¬ÔÚËÄÀą̂ABCD-A1B1C1D1ÖУ¬Ïµ×ABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬Éϵ×A1B1C1D1ÊDZ߳¤Îª1µÄÕý·½ÐΣ¬²àÀâDD1¡ÍƽÃæABCD£¬DD1=2£®
£¨¢ñ£©ÇóÖ¤£ºB1B¡ÎƽÃæD1AC£»
£¨¢ò£©Çó¶þÃæ½ÇB1-AD1-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸