精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xoy中,圆O:x2+y2=1,圆M:(x+a+3)2+(y-2a)2=1(a为实数).若圆O和圆M上分别存在点P,Q,使得∠OQP=30°,则a的取值范围为-1≤a≤$\frac{3}{5}$.

分析 从圆M上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,OP=1,利用圆O和圆M上分别存在点P,Q,使得∠OQP=30°,可得|OM|≤2,进而得出答案.

解答 解:由题意,圆M:(x+a+3)2+(y-2a)2=1(a为实数),圆心为M(-a-3,2a)
从圆M上的点向圆上的点连线成角,当且仅当两条线均为切线时才是最大的角,OP=1.
∵圆O和圆M上分别存在点P,Q,使得∠OQP=30°,
∴|OM|≤2,
∴(a+3)2+4a2≤4,
∴-1≤a≤$\frac{3}{5}$,
故答案为:-1≤a≤$\frac{3}{5}$.

点评 本题考查了直线与圆相切的性质、两点间的距离的计算公式、数形结合思想方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知点M(-3,-1),若函数y=tan$\frac{π}{4}$x(x∈(-2,2))的图象与直线y=1交于点A,则|MA|=2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=($\sqrt{3}$,1),|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$=λ$\overrightarrow{b}$,则实数λ=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且$\frac{AB}{AD}$≥$\frac{1}{2}$,设∠EOF=θ,透光区域的面积为S.
(1)求S关于θ的函数关系式,并求出定义域;
(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{x^2}{3-m}+\frac{y^2}{m-1}=1$的渐近线方程为$y=±\frac{1}{2}x$,则m的值为(  )
A.-1B.$\frac{1}{3}$C.$\frac{11}{3}$D.-1或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒多赚0.5元;如果当天未能按量完成任务,则按完成的雕刻量领取当天工资.
(Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n210230250270300
频数12331
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)在当天的收入不低于276元的条件下,求当天雕刻量不低于270个的概率;
(ⅱ)若X表示雕刻师当天的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=aex-blnx,曲线y=f(x)在点(1,f(1))处的切线方程为$y=(\frac{1}{e}-1)x+1$.
(1)求a,b;
(2)证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
年龄[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数1030302055
赞成人数825241021
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
年龄不低于45岁的人数年龄低于45岁的人数合计
赞成
不赞成
合计
(2)若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.
参考数据:
P(K2≥k00.0250.0100.005 0.001
k03.8416.6357.879 10.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步练习册答案