精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=aex-blnx,曲线y=f(x)在点(1,f(1))处的切线方程为$y=(\frac{1}{e}-1)x+1$.
(1)求a,b;
(2)证明:f(x)>0.

分析 (1)求导函数,利用曲线y=f(x)在(1,f(1))处的切线方程,可得f(1)=$\frac{1}{e}$,f′(1)=$\frac{1}{e}$-1,由此可求a,b的值;
(2)构造函数y=ex-2-(x-1),求导函数,确定函数的单调区间,从而可得函数的最小值;构造y=lnx-(x-1),求出导数和单调区间,可得最大值,故可得证.

解答 (1)解:函数f(x)=aex-blnx,
求导函数可得f′(x)=aex-$\frac{b}{x}$(x>0)
∵曲线y=f(x)在(1,f(1))处的切线方程为$y=(\frac{1}{e}-1)x+1$,
∴f(1)=$\frac{1}{e}$,f′(1)=$\frac{1}{e}$-1,
∴ae=$\frac{1}{e}$,ae-b=$\frac{1}{e}$-1,
∴a=$\frac{1}{{e}^{2}}$,b=1;
(2)证明:函数f(x)=ex-2-lnx,
由y=ex-2-(x-1)的导数y′=ex-2-1,
当x>2时,导数y′>0,函数y递增;
当x<2时,导数y′<0,函数y递减.
可得函数y在x=2处取得极小值也为最小值0,
即有ex-2≥x-1;
由y=lnx-(x-1)的导数为y′=$\frac{1}{x}$-1,
当x>1时,导数y′<0,函数y递减;
当0<x<1时,导数y′>0,函数y递增.
可得函数y在x=1处取得极大值也为最大值0,
即有lnx≤x-1;
由于等号不同时取得,
则ex-2>lnx,
即有f(x)>0成立.

点评 本题考查导数知识的运用,考查导数的几何意义,考查不等式的证明,解题的关键是构造函数,确定函数的单调区间,求出函数的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=\frac{{{e^x}-{e^{-x}}}}{ln|x|}$的图象大致是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xoy中,圆O:x2+y2=1,圆M:(x+a+3)2+(y-2a)2=1(a为实数).若圆O和圆M上分别存在点P,Q,使得∠OQP=30°,则a的取值范围为-1≤a≤$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+a|+|x-a|,a∈R.
(Ⅰ)若a=1,求函数f(x)的最小值;
(Ⅱ)若不等式f(x)≤5的解集为A,且2∉A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若P为可行域$\left\{\begin{array}{l}x≥-1\\ y≤2\\ 2x-y+2≤0\end{array}\right.$内的一点,过P的直线l与圆O:x2+y2=7交于A,B两点,则|AB|的最小值为(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cos($\frac{π}{6}$+θ)=-$\frac{12}{13}$,θ是锐角,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点M,N是抛物线C:y=4x2上不同的两点,F为抛物线C的焦点,且满足∠MFN=135°,弦MN的中点P到C的准线l的距离记为d,若|MN|2=λ•d2,则λ的最小值为2+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C-D-E-F,且CD,DE,EF均与半圆相切,四边形CDEF是等腰梯形,设DE=t百米,记修建每1百米参观线路的费用为f(t)万元,经测算f(t)=$\left\{\begin{array}{l}{5,0<t≤\frac{1}{3}}\\{8-\frac{1}{t},\frac{1}{3}<t<2}\end{array}\right.$

(1)用t表示线段EF的长;
(2)求修建参观线路的最低费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如表:
愿意被外派不愿意被外派合计
70后202040
80后402060
合计6040100
(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案