精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|x+a|+|x-a|,a∈R.
(Ⅰ)若a=1,求函数f(x)的最小值;
(Ⅱ)若不等式f(x)≤5的解集为A,且2∉A,求a的取值范围.

分析 (Ⅰ)因为a=1,所以f(x)=|x+1|+|x-1|≥|x+1-x+1|=2,即可求函数f(x)的最小值;
(Ⅱ)因为2∉A,所以f(2)>5,即|a+2|+|a-2|>5,分类讨论,即可求a的取值范围.

解答 解:(Ⅰ)因为a=1,所以f(x)=|x+1|+|x-1|≥|x+1-x+1|=2,
当且仅当(x+1)(x-1)≤0时,即-1≤x≤1时,f(x)的最小值为2.(5分)
(Ⅱ)因为2∉A,所以f(2)>5,即|a+2|+|a-2|>5,(7分)
当a<-2时,不等式可化为-a-2-a+2>5,解得$a<-\frac{5}{2}$,所以$a<-\frac{5}{2}$;
当-2≤a≤2时,不等式可化为a+2-a+2>5,此时无解;
当a>2时,不等式可化为a+2+a-2>5,解得$a>\frac{5}{2}$,所以$a>\frac{5}{2}$;
综上,a的取值范围为$({-∞,-\frac{5}{2}})∪({\frac{5}{2},+∞})$.(10分)

点评 本题考查不等式的解法,考查绝对值不等式的运用,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x3+1,g(x)=2(log2x2-2log2x+t-4,若函数F(x)=f(g(x))-1在区间[1,2$\sqrt{2}$]上恰有两个不同的零点,则实数t的取值范围(  )
A.[$\frac{5}{2}$,4]B.[$\frac{5}{2}$,$\frac{9}{2}$)C.[4,$\frac{9}{2}$)D.[4,$\frac{9}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m且$\frac{AB}{AD}$≥$\frac{1}{2}$,设∠EOF=θ,透光区域的面积为S.
(1)求S关于θ的函数关系式,并求出定义域;
(2)根据设计要求,透光区域与矩形窗面的面积比值越大越好.当该比值最大时,求边AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{x^2}{3-m}+\frac{y^2}{m-1}=1$的渐近线方程为$y=±\frac{1}{2}x$,则m的值为(  )
A.-1B.$\frac{1}{3}$C.$\frac{11}{3}$D.-1或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.漳州水仙鳞茎硕大,箭多花繁,色美香郁,素雅娟丽,有“天下水仙数漳州”之美誉.现某水仙花雕刻师受雇每天雕刻250粒水仙花,雕刻师每雕刻一粒可赚1.2元,如果雕刻师当天超额完成任务,则超出的部分每粒多赚0.5元;如果当天未能按量完成任务,则按完成的雕刻量领取当天工资.
(Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n210230250270300
频数12331
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)在当天的收入不低于276元的条件下,求当天雕刻量不低于270个的概率;
(ⅱ)若X表示雕刻师当天的收入(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱体的高为(  )
A.$2\sqrt{6}$B.$2\sqrt{7}$C.$4\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=aex-blnx,曲线y=f(x)在点(1,f(1))处的切线方程为$y=(\frac{1}{e}-1)x+1$.
(1)求a,b;
(2)证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2cos22x-2,给出下列命题:
①函数f(x)的值域为[-2,0];
②x=$\frac{π}{8}$为函数f(x)的一条对称轴;
③?β∈R,f(x+β)为奇函数;
④?α∈(0,$\frac{3π}{4}$),f(x)=f(x+2α)对x∈R恒成立,
其中的真命题有(  )
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点为F(-1,0),左准线为x=-2.
(1)求椭圆C的标准方程;
(2)已知直线l交椭圆C于A,B两点.
①若直线l经过椭圆C的左焦点F,交y轴于点P,且满足$\overrightarrow{PA}=λ\overrightarrow{AF}$$\overrightarrow{PB}=μ\overrightarrow{BF}$,求证:λ+μ为常数;
②若OA⊥OB(O为原点),求△AOB的面积的取值范围.

查看答案和解析>>

同步练习册答案