精英家教网 > 高中数学 > 题目详情
若y=
ax2-2ax+a+8
的定义域为R,则实数a的范围是
 
考点:函数的定义域及其求法
专题:不等式的解法及应用
分析:根据题意,转化为不等式恒成立的问题,列出不等式组,求出解集即可.
解答: 解:∵函数y=
ax2-2ax+a+8
的定义域为R,
∴a=0时,满足题意;
a≠0时,应满足
a>0
△≤0

a>0
4a2-4a(a+8)≤0

解得a>0;
综上,实数a的取值范围是[0,+∞).
故答案为:[0,+∞).
点评:本题考查了函数定义域的问题,解题时应转化为不等式恒成立的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(x-1)4(x-1)4=a(a>0),则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E、F分别为A1C1、BC的中点.
(1)求证:平面ABE⊥平面B1BCC1
(2)求证:C1F∥平面ABE;
(3)求三棱锥E-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=|x|+3的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方形ADEF与梯形ABCD所在平面互相垂直,在梯形ABCD中,AB∥CD,△ABD和△DBC分别是以DB和CD为斜边的等腰直角三角形,AD=1.
(Ⅰ)求证AF⊥平面ABCD;
(Ⅱ)求直线FC与平面ABCD所成角的正弦值;
(Ⅲ)在线段CE上是否存在点M,使得DM∥平面FAB,如果存在,说明点M满足的条件,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一空间几何体的三视图如图所示.

(1)求该几何体的体积;
(2)求表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m=
1
0
exdx,n=
e
1
1
x
dx
,则m+n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在集合{(x,y)|0≤x≤1,0≤y≤1}内任取一个元素,能满足约束条件
x+y≤1
x-y≥0
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的程序框图是为求S=1+
1
2
+
1
3
+…+
1
10
的值而设计,其中①处应填
 

查看答案和解析>>

同步练习册答案