精英家教网 > 高中数学 > 题目详情
已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.
(1)由圆的标准方程可得圆心坐标为(1,0),直线的斜率k=
2-0
2-1
=2

故直线的方程为y-0=2(x-1),整理得2x-y-2=0. (4分)
(2)由于圆的半径为3,当直线l的斜率存在时,设直线l的方程为y-2=k(x-2),
整理得kx-y+(2-2k)=0,圆心到直线l的距离为d=
32-(2
2
)
2
=1=
|k-0+2-2k|
k2+1

解得k=
3
4
,代入整理得3x-4y+2=0.  (8分)
当直线l的斜率不存在时,直线l的方程为x=2,经检验符合题意.
∴直线l的方程为3x-4y+2=0,或x=2.        (10分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B
(1)当弦AB被点P平分时,写出直线l的方程;
(2)当直线l的倾斜角为45°时,求弦AB的长.
(3)设圆C与x轴交于M、N两点,有一动点Q使∠MQN=45°.试求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB的长为4
2
时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=5,直线l:x-y=0,则C关于l的对称圆C′的方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y+1)2=1,那么圆心C到坐标原点O的距离是
2
2

查看答案和解析>>

同步练习册答案