精英家教网 > 高中数学 > 题目详情
已知命题p:关于x的方程x2-2x+a=0有实根,命题q:函数f(x)=(a+1)x+2是减函数,若p∨q是真命题,求实数a的取值范围.
分析:先求出命题p,q为真命题的等价条件,利用p∨q是真命题,即可求a的取值范围.
解答:解:若关于x的方程x2-2x+a=0有实数根,
则判别式△=4-4a≥0,解得a≤1,即p:a≤1.
若函数f(x)=(a+1)x+2是减函数.
则a+1<0,解得a<-1,即q:a<-1.
若p∨q是真命题,
则p,q至少有一个为真,
若p真q假,则
a≤1
a≥-1
,即-1≤a≤1,
若p假q真,则
a>1
a<-1
,此时a无解,
如p真q真,则
a≤1
a<-1
,即a<-1.
综上:a≤1.
即a的取值范围a≤1.
点评:本题主要考查复合命题与简单命题真假之间的关系,先求出p,q为真时的等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:关于x的不等式x2+(a-1)x+1≤0的解集为∅,命题q:方程
x2
2
+
y2
a
=1表示焦点在y轴上的椭圆,若命题¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-ax+4=0有实根,命题q:关于x函数y=2x2+ax+4在[3,+∞)上为增函数,若“p或q”为真命题,“p且q”为假命题,则实数a取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2-2x-a>0解集为R;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“p且q”为假命题,“p或q”为真命题,则实数a的取值范围为
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

同步练习册答案