精英家教网 > 高中数学 > 题目详情
设函数,其中a为正实数.
(l)若x=0是函数的极值点,讨论函数的单调性;
(2)若上无最小值,且上是单调增函数,求a的取值范
围;并由此判断曲线与曲线交点个数.
(1)增区间为,减区间为;(2);0.

试题分析:(1)先求出,根据已知“是函数的极值点”,得到,解得,将其代入,求得,结合函数的定义域,利用导数求函数的单调区间;(2)先研究函数在区间没有极小值的情况:,当时,在区间上先减后增,有最小值;当时,在区间上是单调递增的,没有最小值.再研究函数在区间上是单调增函数:上恒成立,解得.综合两种情况得到的取值范围.根据可知,利用导数研究函数的单调性,得到在区间上的最小值是,与的取值范围矛盾,所以两曲线在区间上没有交点.
试题解析:(1) 由,                     2分
的定义域为:,                                      3分
 ,函数的增区间为,减区间为.      5分
(2),   
上有最小值
时,单调递增无最小值.              7分
上是单调增函数∴上恒成立,
.                                       9分
综上所述的取值范围为.                     10分
此时
,
则 h(x)在 单减,单增,               13分
极小值为. 故两曲线没有公共点.                  14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(1)当时,求的单调区间;
(2)对任意的恒成立,求的最小值;
(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)如果,求函数的单调递减区间;
(2)若函数在区间上单调递增,求实数的取值范围;
(3)证明:当时,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线
(Ⅰ)求,,,的值;
(Ⅱ)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 求的单调区间;
(Ⅱ) 求所有的实数,使得不等式恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)证明:当
(Ⅱ)设当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,记的大小关系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数上单调递减,则实数的取值范围是       

查看答案和解析>>

同步练习册答案