精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是菱形,且.

是棱的中点,平面与棱交于点.

1求证:

2,且平面平面,求平面与平面所成的锐二面角的余弦值.

【答案】1证明见解析;2.

【解析】

试题分析:对1,先根据菱形的性质得到,进而得到,接下来根据四点共面,且平面平面,即可得到结论;对于2,取中点,连接,根据等腰三角形的性质以及线面垂直的知识得到,进而根据菱形的性质得到,建立空间直角坐标系,利用向量运算解决.

试题解析:1证明:因为底面是菱形,所以.

又因为,所以.

又因为四点共面,且平面平面

所以.

2中点,连接.因为,所以.又因为平面平面,且平面平面, 所以平面.所以.在菱形中,因为中点,所以.

如图,建立空间直角坐标系.

.

又因为,点是棱中点,所以点是棱中点.所以.所以.

设平面的法向量为,则有所以

,则平面的一个法向量为.

因为平面,所以是平面的一个法向量.

因为

所以平面与平面所成的锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数在其定义域内有两个不同的极值点.

(1)求实数的取值范围;

(2)设两个极值点分别为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线.

)求圆的标准方程;

)设直线经过点,且与圆相交所得弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知有穷数列:……的各项均为正数,且满足条件:

.

(1)若,求出这个数列;

(2)若,求的所有取值的集合;

(3)若是偶数,求的最大值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资AB两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y118B产品的利润y2与投资金额x的函数关系为y2(注:利润与投资金额单位:万元).

(1)该公司已有100万元资金,并全部投入AB两种产品中,其中x万元资金投入A产品,试把AB两种产品利润总和表示为x的函数,并写出定义域;

(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 成等差数列。

(1证明为等比数列,并求数列的通项;

(2)设,且,证明

(3)在(2)小问的条件下,若对任意的,不等式恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.

(1)若圆分别与轴、轴交于点(不同于原点),求证:的面积为定值;

(2)设直线与圆交于不同的两点,且,求圆的方程;

(3)设直线(2)中所求圆交于点为直线上的动点,直线与圆的另一个交点分别为,且在直线异侧,求证:直线过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中有高一新生500名,分成水平相同的两类教学实验,为对比教学效果,现用分层抽样的方法从两类学生中分别抽取了40人,60人进行测试

1)求该学校高一新生两类学生各多少人?

2)经过测试,得到以下三个数据图表:

175分以上两类参加测试学生成绩的茎叶图

2100名测试学生成绩的频率分布直方图

下图表格:100名学生成绩分布表:

先填写频率分布表中的六个空格,然后将频率分布直方图(图2)补充完整;

该学校拟定从参加考试的79分以上(含79分)的类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表,其中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公

式为:弧田面积=,弧田是由圆弧(简称为弧田弧)和以圆

弧的两端为顶点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指的是弧

田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧

田,其弦长AB等于6米,其弧所在圆为圆O,若用上述弧田面积计算公式算得该

弧田的面积为平方米,则cos∠AOB= ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案