精英家教网 > 高中数学 > 题目详情
已知点A(5cosα,5sinα),B(4sinβ,4cosβ),则AB间的最大距离是
 
分析:根据两点间的距离公式,结合三角函数的性质即可得到结论.
解答:解:∵A(5cosα,5sinα),B(4sinβ,4cosβ),
∴|AB|=
(5cos?α-4sin?β)2+(5sin?α-4cos?β)2
=
25+16-40(cos?αsin?β+sin?αcos?β)
=
41-40sin?(α+β)

∴当sin(α+β)=-1时,
|AB|有最大值
41+40
=
81
=9

故答案为:9
点评:本题主要考查两点间的距离公式的计算,利用两角和差是三角公式是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量
e1
=
1
1
,并且矩阵M对应的变换将点(-1,2)变换成(3,0),求矩阵M.
(2)选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.
(3)选修4-5:不等式选讲
已知实数a,b,c,d,e满足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,试确定e的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,-4)、B(-2,2)、C(2,2)、D(5sinθ,5cosθ),其中在曲线x2+y2=25上的点有(    )

A.1个                          B.2个

C.3个                          D.4个

查看答案和解析>>

同步练习册答案