【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是( )
A.点P到平面QEF的距离
B.直线PQ与平面PEF所成的角
C.三棱锥P﹣QEF的体积
D.△QEF的面积
【答案】B
【解析】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离= 为定值;
D.∵点Q到直线CD的距离是定值 a,|EF|为定值,∴△QEF的面积= 为定值;
C.由A.D可知:三棱锥P﹣QEF的体积为定值;
B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.
综上可得:只有B中的值不是定值.
故选:B.
A.由于平面QEF即为对角面A1B1CD,点P为A1D1的中点,可得:点P到平面QEF即到对角面A1B1CD的距离= 为定值;
D.由于点Q到直线CD的距离是定值 a,|EF|为定值,因此△QEF的面积= 为定值;
C.由A.D可知:三棱锥P﹣QEF的体积为定值;
B.用排除法即可得出.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 点M(0,2)关于直线y=﹣x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→ 是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A∩B= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 过点 ,离心率为 ,点F1 , F2分别为其左、右焦点.
(1)求椭圆E的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且 ?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆和双曲线焦点F1 , F2相同,且离心率互为倒数,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,椭圆的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).
(1)求证:BF∥面A1DE;
(2)求证:面A1DE⊥面DEBC;
(3)求二面角A1﹣DC﹣E的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差;
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com