精英家教网 > 高中数学 > 题目详情

求函数f(x)=x2-4x+(2-a)lnx(a∈R)在区间[e,e2]上的最小值.

解:当x∈[e,e2]时,f(x)=x2-4x+(2-a)lnx,
所以
设g(x)=2x2-4x+2-a.
①当a≤0时,有△=16-4×2(2-a)=8a≤0
所以f'(x)≥0,f(x)在[e,e2]上单调递增.
所以f(x)min=f(e)=e2-4e+2-a
②当a>0时,△=16-4×2(2-a)=8a>0,
令f'(x)>0,即2x2-4x+2-a>0,解得 (舍);
令f'(x)<0,即2x2-4x+2-a<0,解得
10,即a≥2(e2-1)2时,f(x)在区间[e,e2]单调递减,
所以f(x)min=f(e2)=e4-4e2+4-2a.
20,即2(e-1)2<a<2(e2-1)2时,f(x)在区间 上单调递减,
在区间 上单调递增,所以
30,即0<a≤2(e-1)2时,f(x)在区间[e,e2]单调递增,
所以f(x)min=f(e)=e2-4e+2-a.
综上所述,
当a≥2(e2-1)2时,f(x)min=e4-4e2+4-2a;
当2(e-1)2<a<2(e2-1)2时,
当a≤2(e-1)2时,f(x)min=e2-4e+2-a.
分析:先求函数的导数,即,再令g(x)=2x2-4x+2-a,对a进行讨论,从而得到
f′(x)的符号,进而得到f(x)的单调性,从而得到函数的极值点、端点的函数值,比较极小值与端点函数值的大小,近而求出最小值.
点评:本题考查了复合函数的在闭区间上的最值问题,还有分类讨论的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要解决下面四个问题,只用顺序结构画不出其程序框图的是(  )
A、利用1+2+…+n=
n(n+1)
2
,计算1+2+3+…+10的值
B、当图面积已知时,求圆的周长
C、当给定一个数x,求其绝对值
D、求函数f(x)=x2-4x+5的函数值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b的图象关于直线x=1对称,且方程f(x)+2x=0有两个相等的实根.
(1)求a,b的值;
(2)求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出求函数f(x)=
x2-1 (x<0)
5x (0≤x<1)
x+7 (x≥1)
的函数值的相应的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=logax在(0,+∞)上是减函数,求函数f(x)=x2-2ax+3在[-2,
12
]
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=2x},B={x|y=lg(4-x2)}.
(1)求A∩B;
(2)当x∈A∩B时,求函数f(x)=x2-x+1的值域.

查看答案和解析>>

同步练习册答案