精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,a1+a5=6,则a3=(  )
A、2B、3C、4D、6
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:等差数列{an}中,a1+a5=2a3,即可得出结论.
解答: 解:∵等差数列{an}中,a1+a5=2a3,a1+a5=6,
∴a3=3,
故选:B.
点评:本题考查的知识点是等差数列的性质,其中等差数列最重要的性质:当m+n=p+q时,am+an=ap+aq,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如边的程序框图,则输出的n=(  )
A、8B、7C、6D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C所对的边分别为a,b,c,若c<bcosA,则△ABC为(  )
A、钝角三角形B、直角三角形
C、锐角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

将二项式(
x
+
1
2
4x
n的展开开式按x的降幂排列,若前三项系数成等差数列,则该展开式中x的指数是整数的项共有(  )个.
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

与y=|x|是同一个函数的是(  )
A、y=
x2
B、y=(
x
2
C、y=
3x3
D、y=x

查看答案和解析>>

科目:高中数学 来源: 题型:

将5个不同的小球任意放入3个不同的盒子里,分别求下列事件的概率;
(1)A=“每个盒子最多放两个球”.
(2)B=“每个盒子都不空”;
(3)C=“恰有一空盒”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,
1
2
}
,B={y|y=x2,x∈A},A∪B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|x+y=0},B={(x,y)|x-y=0},则集合A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,点P在椭圆上,△PF1F2的周长为16,直线2x+y=4经过椭圆上的顶点.
(1)求椭圆C的方程;
(2)直线l与椭圆交于A、B两点,若以AB为直径的圆同时被直线l1:10x-5y-21=0与l2:10x-15y-33=0平分,求直线l的方程.

查看答案和解析>>

同步练习册答案