分析 若函数f(x)=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的定义域为全体实数,则ax2+2x+1>0恒成立,即$\left\{\begin{array}{l}a>0\\△=4-4a<0\end{array}\right.$,解得答案.
解答 解:∵函数f(x)=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的定义域为全体实数,
∴ax2+2x+1>0恒成立,
故$\left\{\begin{array}{l}a>0\\△=4-4a<0\end{array}\right.$,
解得:a>1,
故答案为:a>1.
点评 本题考查的知识点是对数函数的图象和性质,恒成立问题,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,$\frac{5}{4}$) | B. | ($\frac{1}{2}$,-$\frac{5}{4}$) | C. | (-$\frac{1}{2}$,-$\frac{5}{4}$) | D. | ($\frac{1}{2}$,$\frac{5}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com