精英家教网 > 高中数学 > 题目详情
对于定义域为[0,1]的函数f(x)同时满足:(1)对于任意x∈[0,1],f(x)≥0;(2)f(1)=1;(3)若x1≥0,x2≥0,则f(x1+x2)≥f(x1)+f(x2).
(Ⅰ)求f(0)的值;
(Ⅱ)问函数g(x)=f(x)-2x-
1
10
在[
1
2
,1]上是否有零点?
分析:(Ⅰ)根据抽样函数的性质,利用赋值法即可求f(0)的值;
(Ⅱ)根据赋值法判断函数的单调性,利用单调性判断函数是否有零点即可.
解答:解:(Ⅰ)由条件(3)知,令x1=0,x2=0,
得f(0)≥f(0)+f(0).
即f(0)≤0,
由条件(1)f(0)≥0,
∴f(0)=0;
(Ⅱ)由条件(3)知,令x3=x1+x2
则x2=x3-x1
即f(x3)≥f(x1)+f(x3-x1).
∵x3>x1
∴0≤x3-x1≤1,
∴f(x3-x1)≥0,
即f(x3)≥f(x1),
∴f(x)在[0,1]上递增,
∴f(x)的最大值为f(1)=1.
若存在
1
2
≤a≤1
,使得f(a)>2a≥2×
1
2
=1
,与f(x)的最大值1矛盾,
∴对任意的x∈[
1
2
,1]都有f(x)≤2x,
∴恒有f(x)≤2x<2x+
1
10

即f(x)-2x-
1
10
<0,
∴g(x)=f(x)-2x-
1
10
在[
1
2
,1]上没有有零点.
点评:本题主要考查抽象函数的应用,利用赋值法是解决抽象函数的基本方法,考查学生分析问题的能力,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.
(1)若函数f(x)为理想函数,求f(0)的值;
(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明;
(3)若函数f(x)为理想函数,假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为[0,1]的函数f(x)如果满足以下三个条件:①对任意的x∈[0,1],总有f(x)≥2;②f(1)=3;③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)-2成立.则称函数f(x)为理想函数.
(1)判断函数g(x)=2x+1 (0≤x≤1)是否为理想函数,并予以证明;
(2)求定义域为[0,1]的理想函数f(x)的最大值和最小值;
(3)某同学发现:当x=
1
2n
(n∈N)时,有f(
1
2n
)≤
1
2n
+2,由此他提出猜想:对一切x∈(0,1],都有f(x)<2x+2,请你根据该同学发现的结论(或其它方法)来判断此猜想是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为[0,1]的函数f(x),若同时满足以下三个条件:
①f(1)=1; 
②?x∈[0,1],总有f(x)≥0; 
③当x1≥0,x2≥0,x1+x2≤1时,都有f(x1+x2)≥f(x1)+f(x2),则称函数f(x)为理想函数.
(Ⅰ)若函数f(x)为理想函数,求f(0).
(Ⅱ)判断函数g(x)=2x-1(x∈[0,1])和函数h(x)=sin
π2
x
(x∈[0,1])是否为理想函数?若是,予以证明;若不是,说明理由.
(III)设函数f(x)为理想函数,若?x0∈[0,1],使f(x0)∈[0,1],且f[f(x0)]=x0,求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于定义域为[0,1]的函数f(x),如果同时满足以下三条:①对任意的x∈[0,1],总有f(x)≥0;②f(1)③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2)成立,则称函数f(x)为理想函数.
(1)若函数f(x)为理想函数,求f(0)的值;
(2)判断函数g(x)=2x-1(x∈[0,1])是否为理想函数,并予以证明;
(3)若函数f(x)为理想函数,假定?x0∈[0,1],使得f(x0)∈[0,1],且f(f(x0))=x0,求证f(x0)=x0

查看答案和解析>>

同步练习册答案