精英家教网 > 高中数学 > 题目详情
方程(
1
3
)
X
=|log3x|的解的个数是(  )
A、0个B、1个C、2个D、3个
分析:在同一坐标系中画出函数y=(
1
3
)
X
与y=|log3x|的图象,判断图象交点的个数,然后结合方程的根与函数图象交点个数相同,即可得到答案.
解答:精英家教网解:在同一坐标系中画出函数y=(
1
3
)
X
与y=|log3x|的图象,如图所示:
易判断其交点个数为2个.
则方程(
1
3
)
X
=|log3x|的解的个数也为2个
故选C
点评:本题考查的知识点是对数函数的图象和性质,指数函数的图象和性质,其中准确画出函数y=(
1
3
)
X
与y=|log3x|的图象,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
求矩阵A=
2,1
3,0
的特征值及对应的特征向量.
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:
x=t
y=1+2t
(t为参数)和圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)已知直线l的参数方程为
x=3t
y=4t+m
(t为参数),圆C的极坐标方程为ρ=2cosθ,若直线l与圆C有唯一公共点,则m的值为
1
3
或-3
1
3
或-3

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,直线l的参数方程是
x=2+tcosα
y=
3
+sinα
(t是参数,0≤α<π),以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cos(θ-
π
3
),直线l与曲线C相交于A、B两点.
(I)求曲线C的直角坐标方程,并指出它是什么曲线;
(II)若|AB|≥
13
,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线m的参数方程
x=
t
a2+1
y=2+
at
a2+1
(t为参数,a∈R),圆C的参数方程为
x=2cosθ
y=3+2sinθ
(θ为参数)
(1)试判断直线m与圆C的位置关系,并说明理由;
(2)当a=-
1
3
时,求直线m与圆C的相交弦长;
(3)在第二问的条件下,若有定点A(-1,0),过点A的动直线l与圆C交于P,Q两点,M是P,Q的中点,l与m交于点N,探究
AM•
AN
是否与直线l的倾斜角有关,若无关,请求出定值,若有关,请说明理由.

查看答案和解析>>

同步练习册答案