精英家教网 > 高中数学 > 题目详情

已知二次函数,若不等式的解集为.

(1)求集合

(2)若方程C上有解,求实数的取值范围.

 

【答案】

(1),(2)

【解析】(1)    

时,   

时,  

所以集合    

(2)  

则方程为,   

时, 在上有解,

  

时, 在上有解,

        

所以,当时,方程在C上有解,且有唯一解。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,试证明f(x)必有两个零点;
(2)若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]有两个不等实根,证明必有一实根属于(x1,x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,是否存在m∈R,使得f(m)=-a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由;
(2)若对x1x2∈R,且x1x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]
有2个不等实根,证明必有一个根属于(x1,x2).
(3)若f(0)=0,是否存在b的值使{x|f(x)=x}={x|f[f(x)]=x}成立,若存在,求出b的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使得f(m)=-a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,请说明理由;
(3)若对x1,x2∈R,且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]有两个不等实根,证明必有一个根属于(x1,x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和函数g(x)=
bx-1a2x+2b
,方程g(x)=x有两个不等非零实根x1、x2(x1<x2).
(1)证明函数f(x)在(-1,1)上是单调函数;
(2)若方程f(x)=0的两实根为x3,x4(x3<x4),求使x3<x1<x2<x4成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c.
(Ⅰ)若a>0且bc≠0,f(0)=-1,|f(-1)|=|f(1)|=1,试求f(x)的解析式;
(Ⅱ)若对x1、x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=
12
[f(x1)+f(x2)]
有两个不等实根,证明必有一实根属于(x1,x2).

查看答案和解析>>

同步练习册答案