精英家教网 > 高中数学 > 题目详情
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.
求证:MN∥平面A1BD.
证明略
  方法一 如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,

设正方体的棱长为1,则可求得
M(0,1,),N(,1,1),
D(0,0,0),A1(1,0,1),B(1,1,0),
于是=(,0,),
=(1,0,1),=(1,1,0).
设平面A1BD的法向量是
n=(x,y,z).
则n·=0,且n·=0,

取x=1,得y=-1,z=-1.
∴n=(1,-1,-1).
·n=(,0,)·(1,-1,-1)=0,
⊥n,
又∵平面A1BD,∴MN∥平面A1BD.
方法二 ∵=-= -
=-)=,
,又∵MN平面A1BD.
∴MN∥平面A1BD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,.求证
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

试证:若两个平行平面中的一个平面垂直于第三个平面,
则另一个平面也垂直于第三个平面.
已知:如图,为三个平面,.求证:
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平面∥平面,点A∈,C∈,点B∈,D∈,点E,F分别在线段AB,CD上,且AE∶EB=CF∶FD.
(1)求证:EF∥;
(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,
求EF的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.

(1)求证:直线MN∥平面PBC;
(2)求线段MN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCDA1B1C1D1中,EF分别是棱BCC1D1的中点,求证;EF∥平面BB1D1D

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知SA、SB、SC是共点于S的且不共面的三条射线,∠BSA=∠ASC=45°,∠BSC=60°,求证:平面BSA⊥平面SAC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=2,AA1=
3
,AD=2
2
,P为C1D1的中点,M为BC的中点.
(Ⅰ)证明:AM⊥PM;
(Ⅱ)求AD与平面AMP所成角的正弦值;
(Ⅲ)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间两条直线具有下列条件之一,则两直线一定平行的是(  )
A.同垂直于一条直线
B.同垂直于一个平面
C.同平行于一个平面
D.同在一个平面内

查看答案和解析>>

同步练习册答案