精英家教网 > 高中数学 > 题目详情
已知集合A={0,1},B={y|x2+y2=1,x∈A},则A与B的关系是(  )
A、A=BB、A?B
C、A?BD、A⊆B
考点:集合的表示法
专题:计算题,集合
分析:由题意,化简出集合B={-1,0,1},从而确定集合A、B的关系.
解答: 解:B={y|x2+y2=1,x∈A}={-1,0,1},
又∵A={0,1},
∴A?B.
故选B.
点评:本题考查了集合的化简与集合的包含关系的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a3+a10+a11=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,点P到两点(0,
3
),(0,-
3
)的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于点A、B.
(1)写出C的方程;
(2)若
OA
OB
>-1,求k的取值范围;
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L1:2x-y-4=0与抛物线C1:y2=4x交于A、B两点,又C2是顶点在原点,对称轴为x轴,且开口向左的抛物线,L2是过C2的焦点F的直线,并且与C2交于C、D两点,若ABCD成平行四边形,求L1与L2的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在区间[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=g(2-x),且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3
(1)求f(x)的表达式.
(2)是否存在正实数a(a>6),使函数f(x)图象的最高点在直线y=12上?若存在,求出正实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-x2
x
的图象关于(  )
A、x轴对称B、原点对称
C、y轴对称D、直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:

求关于x的方程x2-(3n+2)x+3n2-74=0(n∈Z)的所有实根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x+1),g(x)=loga(x-1),(a>0且a≠1),q(x)=log3[(1-x)(mx+3)],m∈R.
(1)求q(x)的定义域;
(2)设h(x)=f(x)-g(x),若h(3)=-1,且对区间[3,4]上的每一个x的值,不等式h(x)>(
1
2
)x
+n恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x2与y=2x的三个交点.

查看答案和解析>>

同步练习册答案