精英家教网 > 高中数学 > 题目详情
7.底边和侧棱长均为$\sqrt{3}$的三棱锥的表面积为3$\sqrt{3}$.

分析 由题意可知三棱锥是正四面体,它的表面积就是四个三角形的面积,求出一个三角形的面积即可求解本题.

解答 解:由题意可知三棱锥是正四面体,各个三角形的边长为$\sqrt{3}$,
三棱锥的表面积就是四个全等三角形的面积,
即:4×$\frac{\sqrt{3}}{4}$×($\sqrt{3}$)2=3$\sqrt{3}$
故答案为:3$\sqrt{3}$

点评 本题考查棱锥的侧面积表面积,考查空间想象能力,计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设f(x)=ax2-(a+1)x+1
(1)解关于x的不等式f(x)>0;
(2)若对任意的a∈[-1,1],不等式f(x)>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\frac{cosx}{{e}^{x}}$(其中e是自然对数的底数,e=2.71828…)的导函数f′(x)为(  )
A.$f'(x)=\frac{sinx+cosx}{e^x}$B.$f'(x)=-\frac{sinx+cosx}{e^x}$
C.$f'(x)=\frac{sinx-cosx}{e^x}$D.$f'(x)=\frac{cosx-sinx}{e^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.△ABC在空间直角坐标系中的位置及坐标如图所示,则AC边上的中线长为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用根式的形式表示下列各式(a>0):
${a}^{\frac{1}{2}}$,${a}^{\frac{3}{4}}$,${a}^{-\frac{3}{5}}$,${a}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的坐标方程为ρ=4sin(θ-$\frac{π}{6}$).
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆C及内部的公共点,求$\sqrt{3}$x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设△ABC的内角A,B,C的对边分别为a,b,c.已知$\frac{sin(A-B)}{sin(A+B)}$=$\frac{b+c}{c}$.
(1)求角A的大小;
(2)当a=6时,求△ABC面积的最大值,并指出面积最大时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.${({{x^3}+\frac{1}{{2\sqrt{x}}}})^5}$的展开式中x8的系数为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(sin A,cos A),$\overrightarrow{n}$=(1,-$\sqrt{3}$),$\overrightarrow{m}$⊥$\overrightarrow{n}$,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=$\sqrt{3}$(cos2x-sin2x)+4cos Asin xcos x(x∈[0,$\frac{π}{2}$])的值域.

查看答案和解析>>

同步练习册答案