精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|1-
1
x
丨(x>0)
(1)当0<a<b且f(a)=f(b)时,①求
1
a
+
1
b
的值;②求
1
a2
+
1
b2
的取值范围;
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.
分析:(1)利用零点分段法,可将函数的解析式化成分段函数f(x)=
1-
1
x
,x≥1
1
x
-1,0<x<1
的形式,进而由反比例型函数的图象和性质,分析出函数的单调性,结合单调性,可得
1
a
+
1
b
的值及
1
a2
+
1
b2
的取值范围
(2)由(1)中函数的单调性,分a,b∈(0,1),a,b∈(1,+∞),及a∈(0,1),b∈(1,+∞),三种情况分别讨论实数a,b的存在性,最后综合讨论结果,可得答案.
解答:解:(1)∵f(x)=|1-
1
x
丨=
1-
1
x
,x≥1
1
x
-1,0<x<1

∴函数f(x)在(0,1)上为减函数,在(1,+∞)上为增函数
①由0<a<b且f(a)=f(b),可得0<a<1<b
1
a
-1=1-
1
b
,即求
1
a
+
1
b
=2
②由①得:
1
b
=2-
1
a

1
a2
+
1
b2
=
1
a2
+(2-
1
a
2=2(
1
a
-1)2+2
∵0<a<1,
1
b
=2-
1
a
>0
∴1<
1
a
<2
∴0<
1
a
-1<1
∴2<2(
1
a
-1)2+2<4
1
a2
+
1
b2
∈(2,4)
(2)不存在满足条件的实数a,b
若存在满足条件的实数a,b,则0<a<b
①若a,b∈(0,1),则
f(a)=
1
a
-1=b
f(b)=
1
b
-1=a
,解得a=b,满足a<b
②若a,b∈(1,+∞),则
f(a)=
1
a
-1=a
f(b)=
1
b
-1=b
,此方程组无解
③若a∈(0,1),b∈(1,+∞),则a=f(1)=0∉(0,+∞),
综上可知:不存在满足条件的实数a,b
点评:本题考查了函数单调性的性质,函数的值域,是函数图象和性质的综合应用,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案